-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdevector.py
157 lines (134 loc) · 7.28 KB
/
devector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import glob
import os
import librosa
import numpy as np
from hparam import hparam as hp
from speech_embedder_net import SpeechEmbedder, GE2ELoss, get_centroids, get_cossim
import torch
import pandas as pd
import pickle
audio_path = glob.glob(os.path.dirname(hp.unprocessed_data))
model_path = hp.model.model_path
embedder_net = SpeechEmbedder()
embedder_net.load_state_dict(torch.load(model_path))
embedder_net.eval()
def save_traindevector():
print("start text independent utterance feature extraction")
os.makedirs(hp.data.train_path, exist_ok=True) # make folder to save train file
os.makedirs(hp.data.test_path, exist_ok=True) # make folder to save test file
utter_min_len = (hp.data.tisv_frame * hp.data.hop + hp.data.window) * hp.data.sr # lower bound of utterance length
total_speaker_num = len(audio_path)
train_speaker_num= (total_speaker_num//10)*9 # split total data 90% train and 10% test
print("total speaker number : %d"%total_speaker_num)
print("train : %d, test : %d"%(train_speaker_num, total_speaker_num-train_speaker_num))
speaker_dict = {}
# speaker_dict['speaker_id'] = []
# speaker_dict['data'] = []
max = 0
min = 100000
count = 0
for i, folder in enumerate(audio_path):
print("%dth speaker processing..."%i)
utterances_spec = []
speakers = os.listdir(folder)
print(folder)
print(speakers)
A = len('/run/media/rice/DATA/TIMIT/')
speaker_name = folder[A:]
print(speaker_name)
for utter_name in speakers:
utter_path = os.path.join(folder, utter_name) # path of each utterance
utter, sr = librosa.core.load(utter_path, hp.data.sr) # load utterance audio
intervals = librosa.effects.split(utter, top_db=30) # voice activity detection
for interval in intervals:
if (interval[1]-interval[0]) > utter_min_len: # If partial utterance is sufficient long,
utter_part = utter[interval[0]:interval[1]] # save first and last 180 frames of spectrogram.
S = librosa.core.stft(y=utter_part, n_fft=hp.data.nfft,win_length=int(hp.data.window * sr), hop_length=int(hp.data.hop * sr))
S = np.abs(S) ** 2
mel_basis = librosa.filters.mel(sr=hp.data.sr, n_fft=hp.data.nfft, n_mels=hp.data.nmels)
S = np.log10(np.dot(mel_basis, S) + 1e-6) # log mel spectrogram of utterances
utterances_spec.append(S[:, :hp.data.tisv_frame]) # first 180 frames of partial utterance
utterances_spec.append(S[:, -hp.data.tisv_frame:]) # last 180 frames of partial utterance
# if len(utterances_spec) > max:
# max = len(utterances_spec)
# if len(utterances_spec) < min:
# min = len(utterances_spec)
# if len(utterances_spec) < 5:
# continue
utterances_spec = np.array(utterances_spec)
utter_index = np.random.randint(0, utterances_spec.shape[0], 20) # select M utterances per speaker
utterance = utterances_spec[utter_index]
utterance = utterance[:, :, :160] # (10,40,160) TODO implement variable length batch size
utterance = torch.tensor(np.transpose(utterance, axes=(0, 2, 1))) # transpose [batch, frames, n_mels]
enrollment_embeddings = embedder_net(utterance)
embedding = enrollment_embeddings.detach().numpy()
# if i<train_speaker_num: # save spectrogram as numpy file
# # train_x.append(embedding)
# # trainx_devector = np.concatenate(train_x, axis=0)
# # print(utter_name)
# if utter_name not in train_speaker_dict:
# train_speaker_dict[utter_name] = []
# train_speaker_dict[utter_name].append(embedding)
#
# else:
# # test_x.append(embedding)
# # testx_decector = np.concatenate(test_x, axis=0)
# if utter_name not in test_speaker_dict:
# test_speaker_dict[utter_name] = []
# test_speaker_dict[utter_name].append(embedding)
speaker_dict[speaker_name] = embedding
print(count)
count += 1
# speaker_dict['speaker_id'].append(utter_name[:-4])
# speaker_dict['data'].append(embedding)
print(speaker_dict.keys(),len(speaker_dict))
with open('/run/media/rice/DATA/data.pkl', 'wb') as w:
pickle.dump(obj=speaker_dict, file=w)
def save_testdevector(path):
print(len(path))
utter_min_len = (hp.data.tisv_frame * hp.data.hop + hp.data.window) * hp.data.sr # lower bound of utterance length
speaker_dict = {}
max = 0
min = 10000
for utter_name in path:
audios = glob.glob(utter_name + '/*')
A = len('/run/media/rice/DATA/mixtest/')
speaker_name = utter_name[A:]
print(speaker_name)
utterances_spec = []
speaker_dict = {}
for utter_path in audios:
utter, sr = librosa.core.load(utter_path, hp.data.sr) # load utterance audio
intervals = librosa.effects.split(utter, top_db=30) # voice activity detection
for interval in intervals:
if (interval[1]-interval[0]) > utter_min_len: # If partial utterance is sufficient long,
utter_part = utter[interval[0]:interval[1]] # save first and last 180 frames of spectrogram.
S = librosa.core.stft(y=utter_part, n_fft=hp.data.nfft,win_length=int(hp.data.window * sr), hop_length=int(hp.data.hop * sr))
S = np.abs(S) ** 2
mel_basis = librosa.filters.mel(sr=hp.data.sr, n_fft=hp.data.nfft, n_mels=hp.data.nmels)
S = np.log10(np.dot(mel_basis, S) + 1e-6) # log mel spectrogram of utterances
utterances_spec.append(S[:, :hp.data.tisv_frame]) # first 180 frames of partial utterance
utterances_spec.append(S[:, -hp.data.tisv_frame:]) # last 180 frames of partial utterance
# if len(utterances_spec) > max:
# max = len(utterances_spec)
# if len(utterances_spec) < min:
# min = len(utterances_spec)
# if len(utterances_spec) < 5:
# continue
utterances_spec = np.array(utterances_spec)
utter_index = np.random.randint(0, utterances_spec.shape[0], 20) # select M utterances per speaker
utterance = utterances_spec[utter_index]
utterance = utterance[:, :, :160] # (10,40,160) TODO implement variable length batch size
utterance = torch.tensor(np.transpose(utterance, axes=(0, 2, 1))) # transpose [batch, frames, n_mels]
enrollment_embeddings = embedder_net(utterance)
embedding = enrollment_embeddings.detach().numpy()
speaker_dict[speaker_name] = embedding
print(speaker_dict.keys(),len(speaker_dict))
with open('/run/media/rice/DATA/OUTPUT2/'+speaker_name+'.pkl', 'wb') as w:
pickle.dump(obj=speaker_dict, file=w)
if __name__ == "__main__":
#save_traindevector()
#save_testdevector(glob.glob(os.path.dirname('/run/media/rice/DATA/TIMIT/*/*.*')))
save_testdevector(glob.glob(os.path.dirname('/run/media/rice/DATA/mixtest/*/*.*')))