forked from Pragya9ps/Face-Recognition-Attendance-System
-
Notifications
You must be signed in to change notification settings - Fork 0
/
training.py
38 lines (33 loc) · 1.36 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import cv2
import os
import numpy as np
from PIL import Image
#
# recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer = cv2.face.LBPHFaceRecognizer_create()
detector = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")
def getImagesAndLabels(path):
# get the path of all the files in the folder
imagePaths = [os.path.join(path, f) for f in os.listdir(path)]
# create empth face list
faceSamples = []
# create empty ID list
Ids = []
# now looping through all the image paths and loading the Ids and the images
for imagePath in imagePaths:
# loading the image and converting it to gray scale
pilImage = Image.open(imagePath).convert('L')
# Now we are converting the PIL image into numpy array
imageNp = np.array(pilImage, 'uint8')
# getting the Id from the image
Id = int(os.path.split(imagePath)[-1].split(".")[1])
# extract the face from the training image sample
faces = detector.detectMultiScale(imageNp)
# If a face is there then append that in the list as well as Id of it
for (x, y, w, h) in faces:
faceSamples.append(imageNp[y:y+h, x:x+w])
Ids.append(Id)
return faceSamples, Ids
faces, Ids = getImagesAndLabels('TrainingImage')
recognizer.train(faces, np.array(Ids))
recognizer.save('TrainingImageLabel/trainner.yml')