-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWord2Vec.py
262 lines (227 loc) · 11.5 KB
/
Word2Vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import numpy as np
import tensorflow as tf
import tqdm
import string
import re
import logging
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.decomposition import TruncatedSVD
import nltk
import os
logging.basicConfig(level=logging.DEBUG)
class TextRetriever(object):
""" Utility class to read corpus """
@staticmethod
def standardize_text(input_text):
return re.sub("[%s]" % re.escape(string.punctuation), "", input_text.lower())
@staticmethod
def tf_standardize_text(input_text):
lowercase = tf.strings.lower(input_text)
return tf.strings.regex_replace(lowercase,
'[%s]' % re.escape(string.punctuation), '')
@staticmethod
def read_file(path_to_file):
vocab_size = 0
with open(path_to_file, "r") as f:
vocab_size = len(set(f.read().lower().split()))
return path_to_file, vocab_size
@staticmethod
def write_corpus_file(corpus_name, dirname):
corpus = getattr(nltk.corpus, corpus_name)
files = corpus.fileids()
filename = os.path.join(dirname, f"{corpus_name}.txt")
with open(filename, "w") as fp:
for f in files:
words = corpus.words(f)
for i in range(0, len(words), 10):
fp.write(' '.join(words[i:min(i+10, len(words))]) + '\n')
return filename
@staticmethod
def read_corpus(corpus_name, dirname, sequence_len, batch_size, vocab_size=None):
file_name = TextRetriever.write_corpus_file(corpus_name, dirname)
path_to_file, vsz = TextRetriever.read_file(path_to_file=file_name)
if vocab_size is None:
vocab_size = vsz
text_ds = tf.data.TextLineDataset(path_to_file).filter(lambda x: tf.cast(tf.strings.length(x), bool))
vectorize_layer = tf.keras.layers.TextVectorization(standardize=TextRetriever.tf_standardize_text, max_tokens=vocab_size, output_mode="int", output_sequence_length=sequence_len)
vectorize_layer.adapt(text_ds.batch(batch_size))
# returns vocabulary sorted in descending order by frequency
text_vector_ds = text_ds.batch(batch_size).prefetch(tf.data.AUTOTUNE).map(vectorize_layer).unbatch()
sequences = list(text_vector_ds.as_numpy_iterator())
inverse_vocab = vectorize_layer.get_vocabulary()
TextRetriever.inspect_dataset(sequences, inverse_vocab, 10)
return sequences, inverse_vocab, vocab_size
@staticmethod
def inspect_dataset(sequences, inverse_vocab, num_to_inspect):
logging.info(len(sequences))
end = min(num_to_inspect, len(sequences))
for seq in sequences[:end]:
logging.info(f"{seq} => {[inverse_vocab[i] for i in seq]}")
class Plotter(object):
@staticmethod
def plot_weights(weights, size, labels=None, dirname=None):
if size < weights.shape[1]:
weights = Plotter.reduce_to_k_dim(weights, size)
if labels is None:
labels = ["%d" % (i + 1) for i in range(size)]
data = pd.DataFrame(weights, columns=labels)
pd.plotting.scatter_matrix(data, alpha=0.2, diagonal='hist', figsize=(10, 10))
if dirname:
plt.savefig(os.path.join(dirname, f"ReducedWts_Word2Vec.jpeg"), dpi=500)
plt.show()
@staticmethod
def reduce_to_k_dim(M, k=2, n_iter=10):
""" Reduce a matrix M (n, m) to a matrix of dimensionality (n, k) using the
following SVD function from Scikit-Learn:
- http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html
Params:
M (n,m): co-occurence matrix of word counts
k (int): embedding size of each word after dimension reduction
Return:
M_reduced (numpy matrix of shape (number of corpus words, k)): matrix of k-dimensioal word embeddings.
In terms of the SVD from math class, this actually returns U * S
"""
svd = TruncatedSVD(n_components=k, n_iter=n_iter)
return svd.fit_transform(M)
class Word2Vec(tf.keras.Model):
""" Skipgram model """
def __init__(self, embedding_dim, num_neg_samples, window_size, corpus_name, dirname,
batch_size=1024, seed=10, vocab_size=None, sequence_len=10,
buffer_size=10000):
super(Word2Vec, self).__init__()
self.dirname = dirname
self.sequences, self.inverse_vocab, self.vocab_size = TextRetriever.read_corpus(corpus_name, dirname, sequence_len, batch_size, vocab_size)
self.embedding_dim = embedding_dim
self.num_neg_samples = num_neg_samples
self.window_size = window_size
self.batch_size = batch_size
self.buffer_size = buffer_size
self.seed = seed
self.word_to_index_dict = {v: i for i, v in enumerate(self.inverse_vocab)}
self.target_embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim, input_length=1, name="target_emb")
self.context_embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim, input_length=num_neg_samples + 1, name="context_softmax_emb")
self.compile(optimizer="adam", loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True), metrics=["accuracy"])
def call(self, pair):
target, context = pair
if len(target.shape) == 2:
target = tf.squeeze(target, axis=1)
word_embed = self.target_embedding(target)
context_embed = self.context_embedding(context)
dotprod = tf.einsum("ik,ijk->ij", word_embed, context_embed)
return dotprod
def generate_training_data(self):
"""
Generates skip-gram pairs with negative sampling for a list of sequences
(int-encoded sentences) based on window size, number of negative samples
and vocabulary size.
"""
targets, contexts, labels = [], [], []
sampling_table = tf.keras.preprocessing.sequence.make_sampling_table(self.vocab_size)
for sequence in tqdm.tqdm(self.sequences):
positive_skipgrams, _ = tf.keras.preprocessing.sequence.skipgrams(sequence, vocabulary_size=self.vocab_size, sampling_table=sampling_table, window_size=self.window_size, negative_samples=0)
for target_word, context_word in positive_skipgrams:
context_class = tf.expand_dims(tf.constant([context_word], dtype="int64"), 1)
neg_samples, _, _ = tf.random.log_uniform_candidate_sampler(true_classes=context_class, num_true=1, num_sampled=self.num_neg_samples, unique=True, range_max=self.vocab_size, seed=self.seed, name="neg_sampling")
context = tf.concat([tf.squeeze(context_class, 1), neg_samples], 0)
label = tf.constant([1] + [0] * self.num_neg_samples, dtype="int64")
targets.append(target_word)
contexts.append(context)
labels.append(label)
return np.array(targets), np.array(contexts), np.array(labels)
def fit(self, epochs=20):
targets, contexts, labels = self.generate_training_data()
dataset = tf.data.Dataset.from_tensor_slices(((targets, contexts), labels))
dataset = dataset.shuffle(self.buffer_size).batch(self.batch_size, drop_remainder=True)
super().fit(dataset, epochs=epochs)
def write_weights(self, file_name):
weights = self.target_embedding.get_weights()[0]
with open(file_name, "w") as fp:
for index, word in enumerate(self.inverse_vocab):
if index == 0:
continue # skip 0, it's padding.
vec = weights[index]
fp.write(word + "," + ",".join([str(x) for x in vec]) + "\n")
def get_weights(self, top_n=None, word_list=None):
if top_n:
word_list = self.inverse_vocab[1:top_n + 1]
weights = self.target_embedding.get_weights()[0]
indices = np.array([self.word_to_index_dict.get(w, 0) for w in word_list])
return weights[indices, :], word_list
def cosine_similarity(self, top_n=None, word_list=None):
if top_n:
word_list = self.inverse_vocab[1:top_n + 1]
nwords = len(word_list)
weights = self.target_embedding.get_weights()[0]
indices = np.array([self.word_to_index_dict.get(w, 0) for w in word_list])
wts = weights[indices, :]
lengths = np.sum(np.multiply(wts, wts), axis=1)
cosine = np.zeros((nwords, nwords), dtype=np.float64)
for i in range(nwords):
cosine[i, i] = 1.0
for j in range(i):
cosine[i, j] = np.dot(wts[i, :], wts[j, :]) / np.sqrt(lengths[i] * lengths[j])
cosine[j, i] = cosine[i, j]
return cosine, word_list
def length_similarity(self, top_n=None, word_list=None):
if top_n:
word_list = self.inverse_vocab[1:top_n + 1]
nwords = len(word_list)
weights = self.target_embedding.get_weights()[0]
indices = np.array([self.word_to_index_dict.get(w, 0) for w in word_list])
wts = weights[indices, :]
lengths = np.zeros((nwords, nwords), dtype=np.float64)
for i in range(nwords):
for j in range(i):
dist = np.subtract(wts[i, :], wts[j, :])
lengths[i, j] = np.sqrt(np.dot(dist, dist))
lengths[j, i] = lengths[i, j]
return lengths, word_list
@staticmethod
def get_similar_words(weights_file, topN=6):
np.random.seed(64)
df = pd.read_csv(weights_file, header=None)
words = np.random.choice(df.shape[0], 10, replace=False)
similarWords = [[]]
for i in range(topN):
similarWords.append([])
for iword in words:
word = df.loc[iword, 0]
vec = df.loc[iword, 1:].values
l1 = np.dot(vec, vec)
cosineArr = []
for j in range(df.shape[0]):
if j == iword:
continue
word2 = df.loc[j, 0]
vec2 = df.loc[j, 1:].values
l2 = np.dot(vec2, vec2)
cosineSim = np.dot(vec, vec2) / np.sqrt(l1 * l2)
cosineArr.append((cosineSim, word2))
cosineArr.sort(key=lambda x: x[0], reverse=True)
similarWords[0].append(word)
for i in range(topN):
similarWords[i+1].append(cosineArr[i][1])
columns = ["word"] + ["SimWord%d" % (i+1) for i in range(topN)]
data = {c:arr for c,arr in zip(columns, similarWords)}
df2 = pd.DataFrame(data=data)
logging.info(df2.to_latex(index=False))
if __name__ == "__main__":
embedding_dim = 128
num_neg_samples = 5
window_size = 3
corpus_name = "reuters"
vocab_size = 1024
sequence_len = 10
dirname = r"C:\prog\cygwin\home\samit_000\latex\book_stats\code\data"
word2vec = Word2Vec(embedding_dim, num_neg_samples, window_size, corpus_name, dirname,
vocab_size=vocab_size,
sequence_len=sequence_len)
word2vec.fit()
weights_file = os.path.join(dirname, "weights.csv")
word2vec.write_weights(weights_file)
weights, words = word2vec.get_weights(top_n=10)
Plotter.plot_weights(weights, size=10, dirname=dirname)
logging.info(",".join(words))
logging.info(weights)
Word2Vec.get_similar_words(weights_file, topN=5)