-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTaylorRuleTVTP.py
79 lines (63 loc) · 2.78 KB
/
TaylorRuleTVTP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import numpy as np
import pandas as pd
import statsmodels.api as sm
import logging
import os
import matplotlib.pyplot as plt
from src.TaylorRule import TaylorRule
logging.basicConfig(level=logging.DEBUG)
class TaylorRuleTVTP(TaylorRule):
def fitRegimeSwitch(self):
y, X = self.trainData()
ntrain = int(self.df.shape[0] * self.trainTestSplit)
date = self.df.loc[0:ntrain, "DATE"].values
np.random.seed(1024)
XWithConst = sm.add_constant(X, has_constant="add")
self.markovModel = sm.tsa.MarkovRegression(endog=y, k_regimes=3, trend='c', exog=X,
exog_tvtp=XWithConst,
switching_trend=True,
switching_exog=True,
switching_variance=True)
self.markovModel = self.markovModel.fit()
self.logger.info(self.markovModel.summary())
summaryfile = os.path.join(self.dirname, self.__class__.__name__ + "_regimeSwitch.txt")
with open(summaryfile, 'w') as fh:
fh.write(self.markovModel.summary().as_text())
fig, axes = plt.subplots(3, figsize=(10, 7))
ax = axes[0]
ax.plot(date, self.markovModel.filtered_marginal_probabilities[:, 0])
ax.set(title="Probability of regime 1 (Low EFFR)")
ax.grid()
ax = axes[1]
ax.plot(date, self.markovModel.filtered_marginal_probabilities[:, 1])
ax.set(title="Probability of regime 2 (Medium EFFR)")
ax.grid()
ax = axes[2]
ax.plot(date, self.markovModel.filtered_marginal_probabilities[:, 2])
ax.set(title="Probability of regime 3 (High EFFR)")
ax.grid()
fig.tight_layout()
plt.savefig(os.path.join(self.dirname, f"regime_prob_{self.__class__.__name__}.jpeg"),
dpi=500)
plt.show()
fig, axes = plt.subplots(3, figsize=(10, 7))
ax = axes[0]
ax.plot(date, y + self.df.loc[0:ntrain, "pi"].values)
ax.set(title="EFFR")
ax.grid()
ax = axes[1]
ax.plot(date, X[:, 0])
ax.set(title="Inflation Above Target (2%)")
ax.grid()
ax = axes[2]
ax.plot(date, X[:, 1])
ax.set(title="Output Gap")
ax.grid()
fig.tight_layout()
plt.savefig(os.path.join(self.dirname, f"regime_vars_{self.__class__.__name__}.jpeg"),
dpi=500)
plt.show()
if __name__ == "__main__":
dirname = r"C:\prog\cygwin\home\samit_000\latex\book_stats\code\data"
trule = TaylorRuleTVTP(dirname, "DFF", "A191RI1Q225SBEA", "fredgraph_OutputGap", trainTestSplit=1.0)
trule.fit()