You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Euler discovered the remarkable quadratic formula:
$n^2 + n + 41$
It turns out that the formula will produce $40$ primes for the consecutive integer values $0 \le n \le 39$. However, when $n = 40, 40^2 + 40 + 41 = 40(40 + 1) + 41$ is divisible by $41$, and certainly when $n = 41, 41^2 + 41 + 41$ is clearly divisible by $41$.
The incredible formula $n^2 - 79n + 1601$ was discovered, which produces $80$ primes for the consecutive values $0 \le n \le 79$. The product of the coefficients, $-79$ and $1601$, is $-126479$.
Considering quadratics of the form:
$n^2 + an + b$, where $|a| < 1000$ and $|b| \le 1000$
where $|n|$ is the modulus/absolute value of $n$ e.g. $|11| = 11$ and $|-4| = 4$
Find the product of the coefficients, $a$ and $b$, for the quadratic expression that produces the maximum number of primes for consecutive values of $n$, starting with $n = 0$.