-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPandemicModel.py
297 lines (234 loc) · 8.23 KB
/
PandemicModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri May 15 19:08:07 2020
@author: ameanasad
"""
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from sklearn.neighbors import KDTree
import random as r
plt.rcParams['animation.ffmpeg_path'] = '/usr/local/bin/ffmpeg'
# Random Seed set to 0 initializes the same pseudorandom number generator for multiple experiments.
# Comment the random seeds out to use a different random generator everytime you run the code
r.seed(0)
np.random.seed(0)
class PandemicSpread(object):
def __init__(self, size, nodes, infectionRate, radius, speed):
#nodes is the number of particle in the experiment
self.nodeSize = nodes
# Size is the dimension of the enclosing container for the particles
self.size = size
self.nodes_all = {"Infected": [],
"Susceptible": [],
"Dead": [],
"Recovered" : []}
self.infectionRate = infectionRate
self.radius = radius
self.speed = speed
def deployNodes(self):
"""
Deploy all the nodes in random positions
"""
for i in range(self.nodeSize):
newNode = Node(self.size, "Susceptible", self.speed)
self.nodes_all['Susceptible'].append(newNode)
def startInfection(self):
"""
Start infection by deploying one random infected node.
"""
newNode = Node(self.size, "Infected", self.speed )
self.nodes_all['Infected'].append(newNode)
def checkInfection(self, node):
"""
Parameters
----------
node : Object
A susceptible type node object.
Returns
-------
Boolean
True if node becomes infected, false otherwise.
"""
# Used a K-dimensional tree to find neighbors within a givin radius
infected = self.getInfectedCoordinates()
infected = np.array(infected)
node = np.array([node.getCoordinates()])
tree = KDTree(infected, leaf_size = 20)
# We query the neighbors based on the radius of infection
indices = tree.query_radius(node, r=self.radius)
if(len(indices[0]) > 0):
# Added another layer of infection checking by using the infection rate
state = np.random.choice(
[False, True],
1,
p=[1-self.infectionRate, self.infectionRate]
)
return state[0]
else:
return False
def updateNodes(self):
"""
Updates all node position and updates new infections, recoveries and deaths.
"""
infections = []
recoveries = []
deaths = []
for node in self.nodes_all["Susceptible"]:
node.takeStep()
if node.state == "Susceptible":
infected = self.checkInfection(node)
if infected==True:
infections.append(node)
for node in self.nodes_all['Infected']:
node.takeStep()
if node.state == "Recovered":
recoveries.append(node)
if node.state == "Dead":
deaths.append(node)
for node in self.nodes_all['Recovered']:
node.takeStep()
for infection in infections:
infection.changeState("Infected")
self.nodes_all["Susceptible"].remove(infection)
self.nodes_all["Infected"].append(infection)
for recovery in recoveries:
self.nodes_all["Infected"].remove(recovery)
self.nodes_all["Recovered"].append(recovery)
for death in deaths:
self.nodes_all["Infected"].remove(death)
self.nodes_all["Dead"].append(death)
def getInfectedCoordinates(self):
"""
Gets the coordinates of all infected nodes. Coordinates are represented
in a tuple.
Returns
-------
nodes : list
List of 2-tuple coordinate vectors.
"""
nodes = self.nodes_all['Infected']
nodes = map(lambda node: node.getCoordinates(), nodes)
nodes = list(nodes)
return nodes
def getCoordinates(self, name):
"""
Gets the coordinates of nodes. Coordinates are represented
in a tuple.
Returns
-------
nodes : list
List of 2-tuple coordinate vectors.
"""
nodes = self.nodes_all[name]
nodes = map(lambda node: node.getCoordinates(), nodes)
nodes = list(nodes)
return nodes
def getSample(self, name):
"""
Parameters
----------
name : String
State of nodes desired.
Returns
-------
Two lists of node coordinates.
"""
nodes = self.nodes_all[name]
nodes = map(lambda node: node.getCoordinates(), nodes)
nodes = list(nodes)
X = map(lambda node: node[0], nodes)
Y = map(lambda node: node[1], nodes)
X = list(X)
Y = list(Y)
return X,Y
def getApiResponse(self):
"""
I wrote this function so the coordinates, and colors of the nodes can
be exported as an API response to be used in different visualization
frameworks.
Returns
-------
nodes : list of dictionaries
Each dict object contains the coordinates and color of the node.
"""
states = ["Infected", "Susceptible", "Recovered", "Dead"]
nodes =[]
for state in states:
nodes += self.nodes_all[state]
func = lambda node: {"Coord": node.getCoordinates(), "Color": node.getColor()}
nodes = map(func, nodes)
nodes = list(nodes)
return nodes
def getInfectionNo(self):
return len(self.nodes_all['Infected'])
def getSusceptibleNo(self):
return len(self.nodes_all['Susceptible'])
def getRecoveredNo(self):
return len(self.nodes_all['Recovered'])
def getDeathsnNo(self):
return len(self.nodes_all['Dead'])
class Node(object):
def __init__(self, max_coordinate, state, speed):
self.x = r.randint(-max_coordinate*2,max_coordinate*2)
self.y = r.randint(-max_coordinate,max_coordinate)
self.state = state
self.colorMap = {
"Susceptible": "blue",
"Infected": "red",
"Recovered": "Green",
"Dead": "black"}
self.counter = 0
self.angle = np.random.uniform(0,2*np.pi)
self.max = max_coordinate
self.speed = speed
def getCoordinates(self):
return [self.x,self.y]
def takeStep(self):
if self.state == "Infected":
if self.counter == 400:
state = np.random.choice(
['Dead', 'Recovered'],
1,
p=[0.1, 0.9]
)
self.state = state[0]
else:
self.counter+=1
x = self.x
y = self.y
y += np.cos(self.angle)*self.speed
x += np.sin(self.angle)*self.speed
if abs(x) < self.max*2:
self.x = x
else:
self.angle = np.random.uniform(0,2*np.pi)
if abs(y) < self.max - 5:
self.y = y
else:
self.angle = np.random.uniform(0,2*np.pi)
def state(self):
return self.state
def getColor(self):
return self.colorMap[self.state]
def changeState(self, state):
self.state = state
def __str__(self):
return str((self.x,self.y))
def __repr__(self):
return str((self.x,self.y))
"""
Below is a sample test run to show how the model is used.
"""
# size = 300
# nodes = 160
# infectionRate = 0.5
# radius = 7
# speed = 1.9
# steps = 50
# pandemic = PandemicSpread(size, nodes, infectionRate, radius, speed)
# pandemic.startInfection()
# pandemic.deployNodes()
# for step in range(steps):
# pandemic.takeStep()