-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbot.py
89 lines (71 loc) · 3.85 KB
/
bot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import os
import sys
from pipecat.audio.vad.silero import SileroVADAnalyzer
from pipecat.frames.frames import EndFrame, LLMMessagesFrame
from pipecat.pipeline.pipeline import Pipeline
from pipecat.pipeline.runner import PipelineRunner
from pipecat.pipeline.task import PipelineParams, PipelineTask
from pipecat.processors.aggregators.openai_llm_context import OpenAILLMContext
from pipecat.services.cartesia import CartesiaTTSService
from pipecat.services.openai import OpenAILLMService
from pipecat.services.deepgram import DeepgramSTTService
from pipecat.transports.network.fastapi_websocket import (
FastAPIWebsocketTransport,
FastAPIWebsocketParams,
)
from pipecat.serializers.twilio import TwilioFrameSerializer
from pipecat.audio.filters.noisereduce_filter import NoisereduceFilter
from loguru import logger
from dotenv import load_dotenv
load_dotenv(override=True)
logger.remove(0)
logger.add(sys.stderr, level="DEBUG")
async def run_bot(websocket_client, stream_sid):
transport = FastAPIWebsocketTransport(
websocket=websocket_client,
params=FastAPIWebsocketParams(
audio_out_enabled=True,
add_wav_header=False,
vad_enabled=True,
vad_analyzer=SileroVADAnalyzer(),
vad_audio_passthrough=True,
serializer=TwilioFrameSerializer(stream_sid),
audio_in_filter=NoisereduceFilter(),
),
)
llm = OpenAILLMService(api_key=os.getenv("OPENAI_API_KEY"), model="gpt-4o")
stt = DeepgramSTTService(api_key=os.getenv("DEEPGRAM_API_KEY"))
tts = CartesiaTTSService(
api_key=os.getenv("CARTESIA_API_KEY"),
voice_id="79a125e8-cd45-4c13-8a67-188112f4dd22", # British Lady
)
messages = [
{
"role": "system",
"content": "You are a helpful assistant named Sarah at CARE ADHD Support Services. Your output will be converted to audio, so avoid using special characters in your answers. You should be warm and supportive while maintaining professional boundaries. You can assist with: General information about ADHD support programs, Basic service inquiries, Educational resource connections, Simple scheduling tasks. You must not provide medical advice or discuss personal health details. For any clinical questions or specific medical concerns, inform users that a qualified healthcare professional from the care team will contact them directly. Respond to users in a creative and helpful way, keeping your tone warm but professional. Focus on administrative and informational support only. When medical questions arise, gracefully transition to arranging contact with a human healthcare provider. Always remember your responses will be converted to audio, so maintain clear, natural speech patterns and AVOID TECHNICAL FORMATING AND SPECIAL CHARACTERS."
}
]
context = OpenAILLMContext(messages)
context_aggregator = llm.create_context_aggregator(context)
pipeline = Pipeline(
[
transport.input(), # Websocket input from client
stt, # Speech-To-Text
context_aggregator.user(),
llm, # LLM
tts, # Text-To-Speech
transport.output(), # Websocket output to client
context_aggregator.assistant(),
]
)
task = PipelineTask(pipeline, params=PipelineParams(allow_interruptions=True))
@transport.event_handler("on_client_connected")
async def on_client_connected(transport, client):
# Kick off the conversation.
messages.append({"role": "system", "content": "Please introduce yourself to the user."})
await task.queue_frames([LLMMessagesFrame(messages)])
@transport.event_handler("on_client_disconnected")
async def on_client_disconnected(transport, client):
await task.queue_frames([EndFrame()])
runner = PipelineRunner(handle_sigint=False)
await runner.run(task)