-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdpsi.py
58 lines (53 loc) · 1.52 KB
/
dpsi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np
def compute_dpsi(C1, C2, dpsi_path):
fdpsi = open(dpsi_path, "w")
PSIs1 = {}
PSIs2 = {}
for bn, psi_path in C1.items():
PSIs1[bn] = {}
for line in open(psi_path):
eidx, w1, w2, w3, psi = line.strip("\n").split(" ")
PSIs1[bn][eidx] = float(psi) if psi != "NaN" else np.inf
for bn, psi_path in C2.items():
PSIs2[bn] = {}
for line in open(psi_path):
eidx, w1, w2, w3, psi = line.strip("\n").split(" ")
PSIs2[bn][eidx] = float(psi) if psi != "NaN" else np.inf
# FIXME: assuming same events for all psi
# shared_events = set.intersection([])
print(
"Event",
" ".join(C1.keys()),
" ".join(C2.keys()),
"dPSI",
sep="\t",
file=fdpsi,
)
for k in PSIs2[bn]:
psi1 = []
psi2 = []
for bn in C1:
psi1.append(PSIs1[bn][k])
for bn in C2:
psi2.append(PSIs2[bn][k])
dpsi = "NaN"
diff1 = np.mean(psi1)
diff2 = np.mean(psi2)
if not (
diff1 == np.inf
or diff2 == np.inf
or diff1 - diff2 == np.nan
or diff1 - diff2 == np.inf
):
dpsi = abs(diff1) - abs(diff2)
print(
k,
" ".join([str(round(x, 3)) for x in psi1]),
" ".join([str(round(x, 3)) for x in psi2]),
dpsi,
sep="\t",
file=fdpsi,
)
fdpsi.close()
if __name__ == "__main__":
pass