-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdoor_node.c
353 lines (316 loc) · 11.8 KB
/
door_node.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
/*
* door_node.c
*
* Created on: 2017-06-05
* Author: Alessandro Martinelli
*/
/*
* ASSUMPTIONS:
* The initial state is: alarm deactivated, gate locked, garden lights turned off.
*
*/
#include "contiki.h"
#include "sys/etimer.h"
#include "stdio.h" /* For printf() */
#include "dev/button-sensor.h"
#include "net/rime/rime.h"
#include "string.h"
#include "dev/leds.h"
#include "dev/sht11/sht11-sensor.h"
#define ALARM_ACTIVE 0x80 /* 1 if alarm is active */
#define AUTO_OPENING 0x40 /* 1 if automatic opening is occurring */
#define LIGHTS_ON 0x20 /* 1 if garden external light are on */
#define MAX_RETRANSMISSIONS 5
#define CU_NODE_ADDR_0 3
#define CU_NODE_ADDR_1 0
/*---Queue Structure---------------------------------------------------------*/
#define QUEUE_ELEMENTS 5
// The actual circular queue
int queue[QUEUE_ELEMENTS];
// Used to store the position that will be used for inserting the next element
uint8_t queue_insert_index;
/*
* This method initializes the queue. The first element will be put in position 0.
*/
void queue_init(){
queue_insert_index = 0;
uint8_t i;
for(i = 0; i < QUEUE_ELEMENTS; i++){
queue[i] = 0;
}
}
/*
* Insert the given element in the 'queue_insert_index' position
* and set the index of the next value to be inserted.
* We use a circular queue, thus after using the last position
* of the array we will override the first position.
*/
void queue_insert(int new){
queue[queue_insert_index] = new;
queue_insert_index = (queue_insert_index + 1) % QUEUE_ELEMENTS;
}
/*
* This method simply computes the mean value of the temperature
* values stored in the queue.
*/
int queue_mean_get(){
int sum = 0;
// Queue of max 256 elements, here we need only 5
uint8_t i;
for(i = 0; i<QUEUE_ELEMENTS; i++){
sum += queue[i];
}
return (sum/QUEUE_ELEMENTS);
}
/*---------------------------------------------------------------------------*/
static process_event_t message_from_central_unit;
static process_event_t alarm_blink;
static process_event_t opening_blink;
static process_event_t opening_blink_stop;
static void broadcast_recv(struct broadcast_conn *c, const linkaddr_t *from){
// printf("[door node]: broadcast message received from %d.%d: '%s'\n", from->u8[0], from->u8[1], (char *)packetbuf_dataptr());
// Since the processes have not been declared yet, the message is sent to all processes
process_post(NULL, message_from_central_unit, (char *)packetbuf_dataptr());
}
static void recv_runicast(struct runicast_conn *c, const linkaddr_t *from, uint8_t seqno){
// printf("[door node]: runicast message received from %d.%d: '%s'\n", from->u8[0], from->u8[1], (char *)packetbuf_dataptr());
// Since the processes have not been declared yet, the message is sent to all processes
process_post(NULL, message_from_central_unit, (char *)packetbuf_dataptr());
}
static void sent_runicast(struct runicast_conn *c, const linkaddr_t *to, uint8_t retransmissions){
// printf("[door node]: runicast message sent to %d.%d, retransmissions %d\n", to->u8[0], to->u8[1], retransmissions);
}
static void timedout_runicast(struct runicast_conn *c, const linkaddr_t *to, uint8_t retransmissions){
printf("[door node]: runicast message timed out when sending to %d.%d, retransmissions %d\n", to->u8[0], to->u8[1], retransmissions);
}
static const struct broadcast_callbacks broadcast_call = {broadcast_recv};
static struct broadcast_conn broadcast;
static const struct runicast_callbacks runicast_calls = {recv_runicast, sent_runicast, timedout_runicast};
static struct runicast_conn runicast;
/*
* Variable used as an array of flags. Those flags store the state
* of the system. They are used to perform operations in a consistent manner
*/
static uint8_t home_status;
void r_send_to_cu(void* msg){
if(!runicast_is_transmitting(&runicast)) {
linkaddr_t recv;
packetbuf_copyfrom(msg, strlen(msg) + 1);
recv.u8[0] = CU_NODE_ADDR_0;
recv.u8[1] = CU_NODE_ADDR_1;
// printf("%u.%u: sending runicast to address %u.%u\n", linkaddr_node_addr.u8[0], linkaddr_node_addr.u8[1], recv.u8[0], recv.u8[1]);
runicast_send(&runicast, &recv, MAX_RETRANSMISSIONS);
} else {
// The previous transmission has not finished yet
printf("[central unit]: It was not possible to issue the command. Try again later\n");
}
}
/*---------------------------------------------------------------------------*/
PROCESS(door_node_main_process, "Door Node Main Process");
PROCESS(door_node_alarm_blink_process, "Door Node Alarm Led Process");
PROCESS(door_node_opening_blink_process, "Door Node Opening Led Process");
PROCESS(door_node_temperature_process, "Door Node Temperature Process");
AUTOSTART_PROCESSES(&door_node_main_process, &door_node_temperature_process);
/*---------------------------------------------------------------------------*/
PROCESS_THREAD(door_node_main_process, ev, data)
{
PROCESS_EXITHANDLER(broadcast_close(&broadcast));
PROCESS_EXITHANDLER(runicast_close(&runicast));
PROCESS_BEGIN();
// TODO: comment
uint8_t command; // used to store the command sent by the central unit
char out_msg[10]; // stores the message to be sent to the central unit
home_status = 0; // initializes the system status
// This customized message is declared here even if it is used in the
// broadcast received function. But it's ok, since the broadcast_open function
// is called only after the custom event initialization.
message_from_central_unit = process_alloc_event();
alarm_blink = process_alloc_event();
opening_blink = process_alloc_event();
opening_blink_stop = process_alloc_event();
broadcast_open(&broadcast, 129, &broadcast_call);
runicast_open(&runicast, 144, &runicast_calls);
// initialize the circular queue in charge of storing temperature values
queue_init();
SENSORS_ACTIVATE(button_sensor);
// At the beginning, garden lights are turned off.
leds_off(LEDS_GREEN);
leds_on(LEDS_RED);
leds_off(LEDS_BLUE);
while(1){
// We wait for either a message from the central unit,
// a button click or for a message from another process.
PROCESS_WAIT_EVENT();
if(ev == message_from_central_unit){
// Message from the central unit
command = *(uint8_t*)data;
switch(command){
case 1:
/* alarm activation command */
if((home_status & ALARM_ACTIVE) == 0){
home_status |= ALARM_ACTIVE;
process_start(&door_node_alarm_blink_process, NULL);
}
break;
case 2:
/* alarm deactivation command */
if((home_status & ALARM_ACTIVE) != 0){
home_status &= ~(ALARM_ACTIVE);
process_exit(&door_node_alarm_blink_process);
// leds has to return in their previous state
if((home_status & LIGHTS_ON) != 0){
leds_on(LEDS_GREEN);
leds_off(LEDS_RED);
leds_off(LEDS_BLUE);
} else {
leds_off(LEDS_GREEN);
leds_on(LEDS_RED);
leds_off(LEDS_BLUE);
}
}
break;
case 3:
/* auto opening command */
if(((home_status & ALARM_ACTIVE) == 0) || ((home_status & AUTO_OPENING) == 0)){
home_status |= AUTO_OPENING;
process_start(&door_node_opening_blink_process, NULL);
}
break;
case 4:
/* temperature mean value command */
if((home_status & ALARM_ACTIVE) == 0){
sprintf(out_msg, "tem%d", queue_mean_get());
r_send_to_cu(out_msg);
}
break;
default:
break;
}
} else if(ev == alarm_blink){
// A message from the alarm_blink process has arrived. We must
// change the leds in the alarm way.
// It may happen that gate_node_alarm_led_process has sent the alarm_blink
// event just before the "deactivate alarm" was issued. This
// possible race is taken into account.
if((home_status & ALARM_ACTIVE) != 0){
if(leds_get() != 0){
leds_off(LEDS_ALL);
} else {
leds_on(LEDS_ALL);
}
}
} else if(ev == opening_blink){
// A message from the alarm_blink process has arrived. We must
// change the leds in the auto-opening way.
// Like in the alarm_blink case, a possible race is taken into account.
if(((home_status & ALARM_ACTIVE) == 0) && ((home_status & AUTO_OPENING) != 0)){
// In order to have the blue led turned on the first time,
// turned off the second time and so on, the process
// send us the number of occurrence of this message.,
// and we use the occurrence number in order to understand
// if we have to turn on or turn off the blue led.
if(((int)data%2) != 0){
leds_on(LEDS_BLUE);
} else {
leds_off(LEDS_BLUE);
}
}
} else if(ev == opening_blink_stop){
home_status &= ~AUTO_OPENING;
leds_off(LEDS_BLUE);
strcpy(out_msg, "stop");
r_send_to_cu(out_msg);
// There is no need of turning off the blue led, since:
// if the opening process was not interrupted, the final state is off;
// if the opening process was interrupted while blue on, blu will be turned off by alarm deactivation;
// if the opening process was interrupted while blue off, the led is already off
} else if(ev == sensors_event && data == &button_sensor){
if((home_status & ALARM_ACTIVE) == 0){
// If alarm is not active, toggle garden lights
if((home_status & LIGHTS_ON) == 0){
home_status |= LIGHTS_ON;
leds_on(LEDS_GREEN);
leds_off(LEDS_RED);
} else {
home_status &= ~LIGHTS_ON;
leds_off(LEDS_GREEN);
leds_on(LEDS_RED);
}
}
}
}
PROCESS_END();
return 0;
}
/*
* This process, started only when the alarm is activated,
* is in charge of sending periodic events to the main
* process so that the latter one knows it has to blink all leds.
*/
PROCESS_THREAD(door_node_alarm_blink_process, ev, data)
{
PROCESS_BEGIN();
static struct etimer blink_timer;
etimer_set(&blink_timer,CLOCK_SECOND*2);
while(1){
PROCESS_WAIT_EVENT();
if(ev == PROCESS_EVENT_TIMER && etimer_expired(&blink_timer)){
process_post(&door_node_main_process, alarm_blink, NULL);
etimer_reset(&blink_timer);
}
}
PROCESS_END();
return 0;
}
/*
* This process, started only when the automatic opening
* and closing of the door is issued, is in charge of
* waiting for the correct amount of time to elapse, and
* then communicating the main process to blink.
* When the blinking should be stopped, this process
* sends another events to the main process.
*/
PROCESS_THREAD(door_node_opening_blink_process, ev, data)
{
PROCESS_BEGIN();
static uint8_t blinked;
static struct etimer blink_timer;
etimer_set(&blink_timer,CLOCK_SECOND*2);
for(blinked = 1; blinked < 16; blinked++){
PROCESS_WAIT_EVENT();
if(ev == PROCESS_EVENT_TIMER && etimer_expired(&blink_timer)){
if(blinked != 15){
etimer_reset(&blink_timer);
}
if(blinked >= 7){
process_post(&door_node_main_process, opening_blink, (void*)(int)blinked);
}
}
}
process_post(&door_node_main_process, opening_blink_stop, NULL);
PROCESS_END();
return 0;
}
/*
* This process is in charge of sampling the temperature every 10 seconds;
* Each sample is stored in a circular buffer (implementing a FIFO queue),
* where only 5 elements can be stored. So, every time a new element is put
* into the queue, it replaces the oldest one.
*/
PROCESS_THREAD(door_node_temperature_process, ev, data)
{
PROCESS_BEGIN();
static struct etimer temperature_timer;
etimer_set(&temperature_timer, CLOCK_SECOND*10);
while(1){
PROCESS_WAIT_EVENT();
if(ev == PROCESS_EVENT_TIMER && etimer_expired(&temperature_timer)){
SENSORS_ACTIVATE(sht11_sensor);
queue_insert(((sht11_sensor.value(SHT11_SENSOR_TEMP)/10-396)/10));
SENSORS_DEACTIVATE(sht11_sensor);
etimer_reset(&temperature_timer);
}
}
PROCESS_END();
return 0;
}