-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
64 lines (47 loc) · 2.45 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import torch
import torch.utils.data
from utils.utils import init_model_and_dataset
import argparse
from train import train
from test import test
def main(train_flag, evaluate_val, save_imgs, ckpt, num_epochs, batch_size):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if train_flag:
train(ckpt, num_epochs, batch_size, device)
elif not train_flag:
num_workers = 0
directory = 'data/'
model, train_dataset, val_dataset, _, _ = init_model_and_dataset(directory, device)
if evaluate_val:
transformed_dataset = val_dataset
if not evaluate_val:
transformed_dataset = torch.utils.data.ConcatDataset((train_dataset, val_dataset))
# load the pretrained network
if ckpt is not None:
checkpoint = torch.load(ckpt, map_location=device)
model.load_state_dict(checkpoint['model_state_dict'])
val_loader = torch.utils.data.DataLoader(transformed_dataset, batch_size=batch_size, shuffle=False,
num_workers=num_workers, pin_memory=True)
test(val_loader, model, device, save_imgs=save_imgs)
if __name__ == "__main__":
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
parser = argparse.ArgumentParser()
parser.add_argument("--train", type=str2bool, default=True, help="if True/False, training/testing will be implemented")
parser.add_argument("--val_data", type=str2bool, default=True, help="if True/False, validation/all data will be used "
"for testing")
parser.add_argument("--save_imgs", type=str2bool, default=True, help="if True, output imgs will be saved")
parser.add_argument("--batch_size", type=int, default=1, help="size of each image batch")
parser.add_argument("--ckpt", type=str, default=None, help="path to ckpt file")
parser.add_argument("--num_epochs", type=int, default=100, help="number of epochs")
opt = parser.parse_args()
print(opt)
main(train_flag=opt.train, evaluate_val=opt.val_data, save_imgs=opt.save_imgs, ckpt=opt.ckpt,
num_epochs=opt.num_epochs, batch_size=opt.batch_size)