-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathupdate_prices.py
99 lines (78 loc) · 2.87 KB
/
update_prices.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import pandas as pd
import tokencost
from decimal import Decimal
import json
# Update model_prices.json with the latest costs from the LiteLLM cost tracker
def diff_dicts(dict1, dict2):
diff_keys = dict1.keys() ^ dict2.keys()
differences = {k: (dict1.get(k), dict2.get(k)) for k in diff_keys}
differences.update(
{k: (dict1[k], dict2[k]) for k in dict1 if k in dict2 and dict1[k] != dict2[k]}
)
if differences:
print("Differences found:")
for key, (val1, val2) in differences.items():
print(f"{key}: {val1} != {val2}")
else:
print("No differences found.")
if differences:
return True
else:
return False
with open("tokencost/model_prices.json", "r") as f:
model_prices = json.load(f)
if diff_dicts(model_prices, tokencost.TOKEN_COSTS):
print("Updating model_prices.json")
with open("tokencost/model_prices.json", "w") as f:
json.dump(tokencost.TOKEN_COSTS, f, indent=4)
# Load the data
df = pd.DataFrame(tokencost.TOKEN_COSTS).T
df.loc[df.index[1:], "max_input_tokens"] = (
df["max_input_tokens"].iloc[1:].apply(lambda x: "{:,.0f}".format(x))
)
df.loc[df.index[1:], "max_tokens"] = (
df["max_tokens"].iloc[1:].apply(lambda x: "{:,.0f}".format(x))
)
# Updated function to format the cost or handle NaN
def format_cost(x):
if pd.isna(x):
return "--"
else:
price_per_million = Decimal(str(x)) * Decimal(str(1_000_000))
# print(price_per_million)
normalized = price_per_million.normalize()
formatted_price = "{:2f}".format(normalized)
formatted_price = (
formatted_price.rstrip("0").rstrip(".")
if "." in formatted_price
else formatted_price + ".00"
)
return f"${formatted_price}"
# Apply the formatting function using DataFrame.apply and lambda
df[["input_cost_per_token", "output_cost_per_token"]] = df[
["input_cost_per_token", "output_cost_per_token"]
].apply(lambda x: x.map(format_cost))
column_mapping = {
"input_cost_per_token": "Prompt Cost (USD) per 1M tokens",
"output_cost_per_token": "Completion Cost (USD) per 1M tokens",
"max_input_tokens": "Max Prompt Tokens",
"max_output_tokens": "Max Output Tokens",
"model_name": "Model Name",
}
# Assuming the keys of the JSON data represent the model names and have been set as the index
df["Model Name"] = df.index
# Apply the column renaming
df.rename(columns=column_mapping, inplace=True)
# Write the DataFrame with the correct column names as markdown to a file
with open("pricing_table.md", "w") as f:
f.write(
df[
[
"Model Name",
"Prompt Cost (USD) per 1M tokens",
"Completion Cost (USD) per 1M tokens",
"Max Prompt Tokens",
"Max Output Tokens",
]
].to_markdown(index=False)
)