forked from GillianGrayson/dnam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_fcmlp.yaml
51 lines (38 loc) · 1.71 KB
/
main_fcmlp.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# @package _global_
project_name: fcmlp_2
seed: 2
is_cv: False
is_stratified: True
n_splits: 5
# specify here default training configuration
defaults:
- trainer: default.yaml
- model: fcmlp.yaml
- datamodule: betas_pheno_datamodule.yaml
- callbacks: classification.yaml # set this to null if you don't want to use callbacks
- logger: many_loggers.yaml # set logger here or use command line (e.g. `python run.py logger=wandb`)
- experiment: null
- hparams_search: null
- hydra: default.yaml
# enable color logging
- override hydra/hydra_logging: colorlog
- override hydra/job_logging: colorlog
# path to original working directory
# hydra hijacks working directory by changing it to the current log directory,
# so it's useful to have this path as a special variable
# learn more here: https://hydra.cc/docs/next/tutorials/basic/running_your_app/working_directory
work_dir: "E:/YandexDisk/Work/pydnameth/datasets/meta/SchizophreniaDepressionParkinson/full/models/${project_name}" #${hydra:runtime.cwd}
# path to folder with data
data_dir: "E:/YandexDisk/Work/pydnameth/datasets/meta/SchizophreniaDepressionParkinson/full"
# use `python run.py debug=true` for easy debugging!
# this will run 1 train, val and test loop with only 1 batch
# equivalent to running `python run.py trainer.fast_dev_run=true`
# (this is placed here just for easier access from command line)
debug: False
# pretty print config at the start of the run using Rich library
print_config: True
# disable python warnings if they annoy you
ignore_warnings: True
# check performance on test set, using the best model achieved during training
# lightning chooses best model based on metric specified in checkpoint callback
test_after_training: True