-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path4.2-Advanced_Machine_Learning_and_AI4Metabolomics.html
1483 lines (1356 loc) · 71.6 KB
/
4.2-Advanced_Machine_Learning_and_AI4Metabolomics.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en"><head>
<script src="4.2-Advanced_Machine_Learning_and_AI4Metabolomics_files/libs/clipboard/clipboard.min.js"></script>
<script src="4.2-Advanced_Machine_Learning_and_AI4Metabolomics_files/libs/quarto-html/tabby.min.js"></script>
<script src="4.2-Advanced_Machine_Learning_and_AI4Metabolomics_files/libs/quarto-html/popper.min.js"></script>
<script src="4.2-Advanced_Machine_Learning_and_AI4Metabolomics_files/libs/quarto-html/tippy.umd.min.js"></script>
<link href="4.2-Advanced_Machine_Learning_and_AI4Metabolomics_files/libs/quarto-html/tippy.css" rel="stylesheet">
<link href="4.2-Advanced_Machine_Learning_and_AI4Metabolomics_files/libs/quarto-html/light-border.css" rel="stylesheet">
<link href="4.2-Advanced_Machine_Learning_and_AI4Metabolomics_files/libs/quarto-html/quarto-html.min.css" rel="stylesheet" data-mode="light">
<link href="4.2-Advanced_Machine_Learning_and_AI4Metabolomics_files/libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles"><meta charset="utf-8">
<meta name="generator" content="quarto-1.4.549">
<title>Advanced Machine Learning</title>
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui">
<link rel="stylesheet" href="4.2-Advanced_Machine_Learning_and_AI4Metabolomics_files/libs/revealjs/dist/reset.css">
<link rel="stylesheet" href="4.2-Advanced_Machine_Learning_and_AI4Metabolomics_files/libs/revealjs/dist/reveal.css">
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
width: 0.8em;
margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */
vertical-align: middle;
}
/* CSS for syntax highlighting */
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ color: #003b4f; background-color: #f1f3f5; }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span { color: #003b4f; } /* Normal */
code span.al { color: #ad0000; } /* Alert */
code span.an { color: #5e5e5e; } /* Annotation */
code span.at { color: #657422; } /* Attribute */
code span.bn { color: #ad0000; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #003b4f; } /* ControlFlow */
code span.ch { color: #20794d; } /* Char */
code span.cn { color: #8f5902; } /* Constant */
code span.co { color: #5e5e5e; } /* Comment */
code span.cv { color: #5e5e5e; font-style: italic; } /* CommentVar */
code span.do { color: #5e5e5e; font-style: italic; } /* Documentation */
code span.dt { color: #ad0000; } /* DataType */
code span.dv { color: #ad0000; } /* DecVal */
code span.er { color: #ad0000; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #ad0000; } /* Float */
code span.fu { color: #4758ab; } /* Function */
code span.im { color: #00769e; } /* Import */
code span.in { color: #5e5e5e; } /* Information */
code span.kw { color: #003b4f; } /* Keyword */
code span.op { color: #5e5e5e; } /* Operator */
code span.ot { color: #003b4f; } /* Other */
code span.pp { color: #ad0000; } /* Preprocessor */
code span.sc { color: #5e5e5e; } /* SpecialChar */
code span.ss { color: #20794d; } /* SpecialString */
code span.st { color: #20794d; } /* String */
code span.va { color: #111111; } /* Variable */
code span.vs { color: #20794d; } /* VerbatimString */
code span.wa { color: #5e5e5e; font-style: italic; } /* Warning */
</style>
<link rel="stylesheet" href="4.2-Advanced_Machine_Learning_and_AI4Metabolomics_files/libs/revealjs/dist/theme/quarto.css">
<link rel="stylesheet" href="css4NN.css">
<link href="4.2-Advanced_Machine_Learning_and_AI4Metabolomics_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.css" rel="stylesheet">
<link href="4.2-Advanced_Machine_Learning_and_AI4Metabolomics_files/libs/revealjs/plugin/reveal-menu/menu.css" rel="stylesheet">
<link href="4.2-Advanced_Machine_Learning_and_AI4Metabolomics_files/libs/revealjs/plugin/reveal-menu/quarto-menu.css" rel="stylesheet">
<link href="4.2-Advanced_Machine_Learning_and_AI4Metabolomics_files/libs/revealjs/plugin/quarto-support/footer.css" rel="stylesheet">
<style type="text/css">
.callout {
margin-top: 1em;
margin-bottom: 1em;
border-radius: .25rem;
}
.callout.callout-style-simple {
padding: 0em 0.5em;
border-left: solid #acacac .3rem;
border-right: solid 1px silver;
border-top: solid 1px silver;
border-bottom: solid 1px silver;
display: flex;
}
.callout.callout-style-default {
border-left: solid #acacac .3rem;
border-right: solid 1px silver;
border-top: solid 1px silver;
border-bottom: solid 1px silver;
}
.callout .callout-body-container {
flex-grow: 1;
}
.callout.callout-style-simple .callout-body {
font-size: 1rem;
font-weight: 400;
}
.callout.callout-style-default .callout-body {
font-size: 0.9rem;
font-weight: 400;
}
.callout.callout-titled.callout-style-simple .callout-body {
margin-top: 0.2em;
}
.callout:not(.callout-titled) .callout-body {
display: flex;
}
.callout:not(.no-icon).callout-titled.callout-style-simple .callout-content {
padding-left: 1.6em;
}
.callout.callout-titled .callout-header {
padding-top: 0.2em;
margin-bottom: -0.2em;
}
.callout.callout-titled .callout-title p {
margin-top: 0.5em;
margin-bottom: 0.5em;
}
.callout.callout-titled.callout-style-simple .callout-content p {
margin-top: 0;
}
.callout.callout-titled.callout-style-default .callout-content p {
margin-top: 0.7em;
}
.callout.callout-style-simple div.callout-title {
border-bottom: none;
font-size: .9rem;
font-weight: 600;
opacity: 75%;
}
.callout.callout-style-default div.callout-title {
border-bottom: none;
font-weight: 600;
opacity: 85%;
font-size: 0.9rem;
padding-left: 0.5em;
padding-right: 0.5em;
}
.callout.callout-style-default div.callout-content {
padding-left: 0.5em;
padding-right: 0.5em;
}
.callout.callout-style-simple .callout-icon::before {
height: 1rem;
width: 1rem;
display: inline-block;
content: "";
background-repeat: no-repeat;
background-size: 1rem 1rem;
}
.callout.callout-style-default .callout-icon::before {
height: 0.9rem;
width: 0.9rem;
display: inline-block;
content: "";
background-repeat: no-repeat;
background-size: 0.9rem 0.9rem;
}
.callout-title {
display: flex
}
.callout-icon::before {
margin-top: 1rem;
padding-right: .5rem;
}
.callout.no-icon::before {
display: none !important;
}
.callout.callout-titled .callout-body > .callout-content > :last-child {
padding-bottom: 0.5rem;
margin-bottom: 0;
}
.callout.callout-titled .callout-icon::before {
margin-top: .5rem;
padding-right: .5rem;
}
.callout:not(.callout-titled) .callout-icon::before {
margin-top: 1rem;
padding-right: .5rem;
}
/* Callout Types */
div.callout-note {
border-left-color: #4582ec !important;
}
div.callout-note .callout-icon::before {
background-image: url('');
}
div.callout-note.callout-style-default .callout-title {
background-color: #dae6fb
}
div.callout-important {
border-left-color: #d9534f !important;
}
div.callout-important .callout-icon::before {
background-image: url('');
}
div.callout-important.callout-style-default .callout-title {
background-color: #f7dddc
}
div.callout-warning {
border-left-color: #f0ad4e !important;
}
div.callout-warning .callout-icon::before {
background-image: url('');
}
div.callout-warning.callout-style-default .callout-title {
background-color: #fcefdc
}
div.callout-tip {
border-left-color: #02b875 !important;
}
div.callout-tip .callout-icon::before {
background-image: url('');
}
div.callout-tip.callout-style-default .callout-title {
background-color: #ccf1e3
}
div.callout-caution {
border-left-color: #fd7e14 !important;
}
div.callout-caution .callout-icon::before {
background-image: url('');
}
div.callout-caution.callout-style-default .callout-title {
background-color: #ffe5d0
}
</style>
<style type="text/css">
.reveal div.sourceCode {
margin: 0;
overflow: auto;
}
.reveal div.hanging-indent {
margin-left: 1em;
text-indent: -1em;
}
.reveal .slide:not(.center) {
height: 100%;
overflow-y: auto;
}
.reveal .slide.scrollable {
overflow-y: auto;
}
.reveal .footnotes {
height: 100%;
overflow-y: auto;
}
.reveal .slide .absolute {
position: absolute;
display: block;
}
.reveal .footnotes ol {
counter-reset: ol;
list-style-type: none;
margin-left: 0;
}
.reveal .footnotes ol li:before {
counter-increment: ol;
content: counter(ol) ". ";
}
.reveal .footnotes ol li > p:first-child {
display: inline-block;
}
.reveal .slide ul,
.reveal .slide ol {
margin-bottom: 0.5em;
}
.reveal .slide ul li,
.reveal .slide ol li {
margin-top: 0.4em;
margin-bottom: 0.2em;
}
.reveal .slide ul[role="tablist"] li {
margin-bottom: 0;
}
.reveal .slide ul li > *:first-child,
.reveal .slide ol li > *:first-child {
margin-block-start: 0;
}
.reveal .slide ul li > *:last-child,
.reveal .slide ol li > *:last-child {
margin-block-end: 0;
}
.reveal .slide .columns:nth-child(3) {
margin-block-start: 0.8em;
}
.reveal blockquote {
box-shadow: none;
}
.reveal .tippy-content>* {
margin-top: 0.2em;
margin-bottom: 0.7em;
}
.reveal .tippy-content>*:last-child {
margin-bottom: 0.2em;
}
.reveal .slide > img.stretch.quarto-figure-center,
.reveal .slide > img.r-stretch.quarto-figure-center {
display: block;
margin-left: auto;
margin-right: auto;
}
.reveal .slide > img.stretch.quarto-figure-left,
.reveal .slide > img.r-stretch.quarto-figure-left {
display: block;
margin-left: 0;
margin-right: auto;
}
.reveal .slide > img.stretch.quarto-figure-right,
.reveal .slide > img.r-stretch.quarto-figure-right {
display: block;
margin-left: auto;
margin-right: 0;
}
</style>
</head>
<body class="quarto-light">
<div class="reveal">
<div class="slides">
<section id="title-slide" class="quarto-title-block center">
<h1 class="title">Advanced Machine Learning</h1>
<p class="subtitle">Neural Networks, Deep Learning <br>and Artificial Intelligence</p>
<div class="quarto-title-authors">
</div>
</section>
<section>
<section id="from-artificial-neural-networks-to-artifial-intelligence" class="title-slide slide level1 center">
<h1>From Artificial Neural Networks to Artifial Intelligence</h1>
</section>
<section id="historical-background-1" class="slide level2">
<h2>Historical Background (1)</h2>
<ul>
<li><p>In the post-pandemic world, a lightning rise of AI, with a mess of realities and promises is impacting society.</p></li>
<li><p>Since ChatGPT entered the scene everybody has an experience, an opinion, or a fear on the topic.</p></li>
</ul>
<img data-src="https://bernardmarr.com/wp-content/uploads/2022/04/The-Dangers-Of-Not-Aligning-Artificial-Intelligence-With-Human-Values.jpg" class="quarto-figure quarto-figure-center r-stretch" style="width:100.0%"></section>
<section id="is-it-just-machine-learning" class="slide level2">
<h2>Is it just machine learning?</h2>
<ul>
<li><p>Most tasks performed by AI can be described as Classification or Prediction used in applications as:</p>
<ul>
<li>Recommendation systems,</li>
<li>Image recognition, Image generation</li>
<li>Natural language processing</li>
</ul></li>
<li><p>AI relies on machine learning algorithms, to make predictions based on large amounts of data.</p></li>
<li><p>AI has far-reaching implications beyond its predictive capabilities, including ethical, social or technological.</p></li>
</ul>
</section>
<section id="ai-anns-and-deep-learning" class="slide level2">
<h2>AI, ANNs and Deep learning</h2>
<ul>
<li><p>In many contexts, talking about AI means talking about <em>Deep Learning (DL)</em>.</p></li>
<li><p>DL is a successful AI model which has powered many application such as <em>self-driving cars, voice assistants, and medical diagnosis systems</em>.</p></li>
<li><p>DL originates in the field of <em>Artificial Neural Networks</em></p></li>
<li><p>But DL extends the basic principles of ANNs by:</p>
<ul>
<li>Adding complex architectures and algorithms and</li>
<li>At the same time becoming more automatic</li>
</ul></li>
</ul>
</section>
<section id="the-early-history-of-ai-1" class="slide level2">
<h2>The early history of AI (1)</h2>
<img data-src="images/AIHistory1.jpg" style="width:90.0%" class="r-stretch quarto-figure-center"><p class="caption"><a href="https://nerdyelectronics.com/a-quick-history-of-ai-ml-and-dl/">A Quick History of AI, ML and DL</a></p></section>
<section id="milestones-in-the-history-of-dl" class="slide level2">
<h2>Milestones in the history of DL</h2>
<p>We can see several hints worth to account for:</p>
<ul>
<li><p>The <strong>Perceptron</strong> and the first <strong>Artificial Neural Network</strong> where the basic building block was introduced.</p></li>
<li><p>The <strong>Multilayered perceptron</strong> and back-propagation where complex architectures were suggested to improve the capabilities.</p></li>
<li><p><strong>Deep Neural Networks</strong>, with many hidden layers, and auto-tunability capabilities.</p></li>
</ul>
</section>
<section id="from-ann-to-deep-learning" class="slide level2">
<h2>From ANN to Deep learning</h2>
<img data-src="images/WhyDLNow.png" class="quarto-figure quarto-figure-center r-stretch" style="width:100.0%"><p class="caption">Why Deep Learning Now?</p><div class="font90">
<p>Source: <a href="introtodeeplearning.com">Alex Amini’s MIT Introduction to Deep Learning’ course</a></p>
</div>
</section>
<section id="success-stories" class="slide level2">
<h2>Success stories</h2>
<p>Success stories such as</p>
<ul>
<li><p>the development of self-driving cars,</p></li>
<li><p>the use of AI in medical diagnosis, and</p></li>
<li><p>online shopping personalized recommendations</p></li>
</ul>
<p>have also contributed to the widespread adoption of AI.</p>
</section>
<section id="not-to-talk-abou-the-fears" class="slide level2">
<h2>Not to talk abou the fears</h2>
<div class="columns">
<div class="column" style="width:60%;">
<ul>
<li><p>AI also comes with fears from multiple sources from science fiction to religion</p>
<ul>
<li><p>Mass unemployment</p></li>
<li><p>Loss of privacity</p></li>
<li><p>AI bias</p></li>
<li><p>AI fakes</p></li>
<li><p>Or, simply, AI takeover</p></li>
</ul></li>
</ul>
</div><div class="column" style="width:40%;">
<p><br></p>
<p><img data-src="images/2.1-Introduction_to_ANN-Slides_insertimage_2.png"></p>
</div>
</div>
</section>
<section id="back-to-science" class="slide level2">
<h2>Back to science</h2>
<p>Where/How does it all fit?</p>
<img data-src="images/AI-ML-DL-1.jpg" class="quarto-figure quarto-figure-center r-stretch" style="width:100.0%"></section>
<section id="ai-ml-dl" class="slide level2">
<h2>AI, ML, DL …</h2>
<ul>
<li><p><strong>Artificial intelligence</strong>: Ability of a computer to perform tasks commonly associated with intelligent beings.</p></li>
<li><p><strong>Machine learning</strong>: study of algorithms that learn from examples and experience instead of relying on hard-coded rules and make predictions on new data</p></li>
<li><p><strong>Deep learning</strong>: sub field of ML focusing on learning data representations as successive successive layers of increasingly meaningful representations.</p></li>
</ul>
</section>
<section id="how-does-dl-improve" class="slide level2">
<h2>How does DL improve</h2>
<img data-src="images/ML_vs_DL-2.png" class="quarto-figure quarto-figure-center r-stretch" style="width:100.0%"><p class="caption"><a href="https://ieeexplore.ieee.org/document/9363896">ML and DL Approaches for Brain Disease Diagnosis</a></p><aside class="notes">
<ul>
<li>DNN: feature extraction and classification without (or with much les) human intervention.</li>
<li>DNN improves with data availability, without seemingly reaching plateaus.</li>
</ul>
<style type="text/css">
span.MJX_Assistive_MathML {
position:absolute!important;
clip: rect(1px, 1px, 1px, 1px);
padding: 1px 0 0 0!important;
border: 0!important;
height: 1px!important;
width: 1px!important;
overflow: hidden!important;
display:block!important;
}</style></aside>
</section>
<section id="size-does-matter" class="slide level2">
<h2>Size does matter!</h2>
<img data-src="images/PerformanceVsAmountOfData.png" class="quarto-figure quarto-figure-center r-stretch" style="width:100.0%"><p class="caption">An illustration of the performance comparison between deep learning (DL) and other machine learning (ML) algorithms, where DL modeling from large amounts of data can increase the performance</p></section>
<section id="the-impact-of-deep-learning" class="slide level2 smaller">
<h2>The impact of Deep learning</h2>
<ul>
<li><p>Near-human-level image classification</p></li>
<li><p>Near-human-level speech transcription</p></li>
<li><p>Near-human-level handwriting transcription</p></li>
<li><p>Dramatically improved machine translation</p></li>
<li><p>Dramatically improved text-to-speech conversion</p></li>
<li><p>Digital assistants such as Google Assistant and Amazon Alexa</p></li>
<li><p>Near-human-level autonomous driving</p></li>
<li><p>Improved ad targeting, as used by Google, Baidu, or Bing</p></li>
<li><p>Improved search results on the web</p></li>
<li><p>Ability to answer natural language questions</p></li>
<li><p>Superhuman Go playing</p></li>
</ul>
</section>
<section id="not-all-that-glitters-is-gold" class="slide level2">
<h2>Not all that glitters is gold …</h2>
<ul>
<li><p>According to F. Chollet, the developer of Keras,</p>
<ul>
<li>“<em>we shouldn’t believe the short-term hype, but should believe in the long-term vision</em>.</li>
<li><em>It may take a while for AI to be deployed to its true potential—a potential the full extent of which no one has yet dared to dream</em></li>
<li><em>but AI is coming, and it will transform our world in a fantastic way</em>”.</li>
</ul></li>
</ul>
</section></section>
<section>
<section id="the-artificial-neurone" class="title-slide slide level1 center">
<h1>The Artificial Neurone</h1>
</section>
<section id="emulating-biological-neurons" class="slide level2">
<h2>Emulating biological neurons</h2>
<div class="columns">
<div class="column" style="width:50%;">
<div class="cell" data-layout-align="center">
<div class="cell-output-display">
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="images/NaturalNeuron.png" class="quarto-figure quarto-figure-center" style="width:100.0%"></p>
<figcaption><a href="">A biological Neuron</a></figcaption>
</figure>
</div>
</div>
</div>
</div><div class="column" style="width:50%;">
<div class="cell" data-layout-align="center">
<div class="cell-output-display">
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="images/MacCulloghPitts-Neuron.png" class="quarto-figure quarto-figure-center" style="width:100.0%"></p>
<figcaption><a href="">MuCulloch & Pitts proposal</a></figcaption>
</figure>
</div>
</div>
</div>
</div>
</div>
<ul>
<li>The first model of an artifial neurone was proposed by Mc Cullough & Pitts in 1943</li>
</ul>
</section>
<section id="mc-culloughs-neuron" class="slide level2">
<h2>Mc Cullough’s neuron</h2>
<ul>
<li>It may be divided into 2 parts.
<ul>
<li>The first part, <span class="math inline">\(g\)</span>,takes an input (as the dendrites of a neuron would do),</li>
<li>It performs an aggregation and</li>
<li>based on the aggregated value the second part, <span class="math inline">\(f\)</span>, makes a decision.</li>
</ul></li>
</ul>
<p>See <a href="https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1">the source of this picture</a> for an illustration on how this can be used to emulate logical operations such as AND, OR or NOT, but not XOR.</p>
</section>
<section id="overcoming-the-limitations" class="slide level2">
<h2>Overcoming the limitations</h2>
<ul>
<li><p>To overcome these limitations Rosenblatt, proposed the perceptron model, or <em>artificial neuron</em>, in 1958.</p></li>
<li><p>Generalizes McCullough-Pitts neuron in that <em>weights and thresholds can be learnt over time</em>.</p>
<ul>
<li>It takes a weighted sum of the inputs and</li>
<li>It sets the output to iff the sum is more than an arbitrary threshold (<strong><span class="math inline">\(\theta\)</span></strong>).</li>
</ul></li>
</ul>
</section>
<section id="rosenblatts-perceptron" class="slide level2">
<h2>Rosenblatt’s perceptron</h2>
<p><a href="https://towardsdatascience.com/perceptron-the-artificial-neuron-4d8c70d5cc8d"><img data-src="images/RosenblattPerceptron1.png" style="width:100.0%"></a></p>
</section>
<section id="activation-in-biological-neurons" class="slide level2">
<h2>Activation in biological neurons</h2>
<ul>
<li>Biological neurons are specialized cells that transmit signals to communicate with each other.</li>
<li>Neuron’s activation is based on releasing <em>neurotransmitters</em>, chemicals that transmit signals between nerve cells.
<ul>
<li>When the signal reaching the neuron exceeds a certain threshold, it releases neurotransmitters to continue the communication process.</li>
</ul></li>
</ul>
</section>
<section id="activation-functions-in-an" class="slide level2">
<h2>Activation functions in AN</h2>
<ul>
<li>Analogously, <em>activation functions</em> in AN are functions to decide if the AN it is activated or not.</li>
<li>AN’s activation function is a mathematical function applied to the neuron’s input to produce an output.
<ul>
<li>In practice it extends to complicated functions that can learn complex patterns in the data.</li>
<li>Activation functions can incorporate non-linearity, improving over linear classifiers.</li>
</ul></li>
</ul>
</section>
<section id="activation-function" class="slide level2">
<h2>Activation function</h2>
<img data-src="images/ActivationFunction0.png" class="quarto-figure quarto-figure-center r-stretch" style="width:100.0%"></section>
<section id="artificial-neuron" class="slide level2">
<h2>Artificial Neuron</h2>
<p>With all these ideas in mind we can now define an Artificial Neuron as a <em>computational unit</em> that :</p>
<ul>
<li><p>takes as input <span class="math inline">\(x=(x_0,x_1,x_2,x_3),\ (x_0 = +1 \equiv bias)\)</span>,</p></li>
<li><p>outputs <span class="math inline">\(h_{\theta}(x) = f(\theta^\intercal x) = f(\sum_i \theta_ix_i)\)</span>,</p></li>
<li><p>where <span class="math inline">\(f:\mathbb{R}\mapsto \mathbb{R}\)</span> is called the <strong>activation function</strong>.</p></li>
</ul>
</section>
<section id="activation-functions" class="slide level2">
<h2>Activation functions</h2>
<div class="font90">
<ul>
<li><p>Goal of activation function is to provide the neuron with <em>the capability of producing the required outputs</em>.</p></li>
<li><p>Flexible enough to produce</p>
<ul>
<li>Either linear or non-linear transformations.</li>
<li>Output in the desired range ([0,1], {-1,1}, <span class="math inline">\(\mathbb{R}^+\)</span>…)</li>
</ul></li>
<li><p>Usually chosen from a (small) set of possibilities.</p>
<ul>
<li>Sigmoid function</li>
<li>Hyperbolic tangent, or <code>tanh</code>, function</li>
<li>ReLU</li>
</ul></li>
</ul>
</div>
</section>
<section id="the-sigmoid-function" class="slide level2 smaller">
<h2>The sigmoid function</h2>
<div class="columns">
<div class="column" style="width:50%;">
<p><span class="math display">\[
f(z)=\frac{1}{1+e^{-z}}
\]</span></p>
<ul>
<li><p>Output real values <span class="math inline">\(\in (0,1)\)</span>.</p></li>
<li><p>Natural interpretations as <em>probability</em></p></li>
</ul>
<div class="cell" data-layout-align="center">
<div class="cell-output-display">
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="images/sigmoidFunction.png" class="quarto-figure quarto-figure-center" style="width:100.0%"></p>
</figure>
</div>
</div>
</div>
</div><div class="column" style="width:50%;">
<div class="cell" data-layout-align="center">
<div class="cell-output-display">
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="images/sigmoidFunctionDerivative.png" class="quarto-figure quarto-figure-center" style="width:100.0%"></p>
</figure>
</div>
</div>
</div>
</div>
</div>
</section>
<section id="the-hyperbolic-tangent" class="slide level2 smaller">
<h2>the hyperbolic tangent</h2>
<div class="columns">
<div class="column" style="width:50%;">
<p>Also called <code>tanh</code>, function:</p>
<p><span class="math display">\[
f(z)=\frac{e^{z}-e^{-z}}{e^{z}+e^{-z}}
\]</span></p>
<ul>
<li><p>outputs are zero-centered and bounded in −1,1</p></li>
<li><p>scaled and shifted Sigmoid</p></li>
<li><p>stronger gradient but still has vanishing gradient problem</p></li>
<li><p>Its derivative is <span class="math inline">\(f'(z)=1-(f(z))^2\)</span>.</p></li>
</ul>
</div><div class="column" style="width:50%;">
<div class="cell" data-layout-align="center">
<div class="cell-output-display">
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="images/TanhFunction.png" class="quarto-figure quarto-figure-center" style="width:100.0%"></p>
</figure>
</div>
</div>
</div>
</div>
</div>
</section>
<section id="the-relu" class="slide level2 smaller">
<h2>The ReLU</h2>
<div class="columns">
<div class="column" style="width:50%;">
<ul>
<li><p><em>rectified linear unit</em>: <span class="math inline">\(f(z)=\max\{0,z\}\)</span>.</p></li>
<li><p>Close to a linear: piece-wise <em>linear</em> function with two linear pieces.</p></li>
<li><p>Outputs are in %(0,)$ , thus not bounded</p></li>
<li><p>Half rectified: activation threshold at 0</p></li>
<li><p>No vanishing gradient problem</p></li>
</ul>
</div><div class="column" style="width:50%;">
<div class="cell" data-layout-align="center">
<div class="cell-output-display">
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="images/ReLUFunction.png" class="quarto-figure quarto-figure-center" style="width:100.0%"></p>
</figure>
</div>
</div>
</div>
</div>
</div>
</section>
<section id="more-activation-functions" class="slide level2">
<h2>More activation functions</h2>
<p><img data-src="images/ActivationFunctions.png" style="width:100.0%">.</p>
</section>
<section id="putting-it-all-together" class="slide level2">
<h2>Putting it all together</h2>
<img data-src="images/ArtificialNeuron.png" class="quarto-figure quarto-figure-center r-stretch" style="width:100.0%"></section>
<section id="in-words" class="slide level2 smaller">
<h2>In words</h2>
<ul>
<li><p>An ANN takes a vector of input values <span class="math inline">\(x_{1}, \ldots, x_{d}\)</span> and combines it with some weights that are local to the neuron <span class="math inline">\(\left(w_{0}, w_{1}, . ., w_{d}\right)\)</span> to compute a net input <span class="math inline">\(w_{0}+\sum_{i=1}^{d} w_{i} \cdot x_{i}\)</span>.</p></li>
<li><p>To compute its output, it then passes the net input through a possibly non-linear univariate activation function <span class="math inline">\(g(\cdot)\)</span>, usually vchosen from a set of options such as <em>Sigmoid</em>, <em>Tanh</em> or <em>ReLU</em> functions</p></li>
<li><p>To deal with the <em>bias</em>, we create an extra input variable <span class="math inline">\(x_{0}\)</span> with value always equal to 1 , and so the function computed by a single artificial neuron (parameterized by its weights <span class="math inline">\(\mathbf{w}\)</span> ) is:</p></li>
</ul>
<p><span class="math display">\[
y(\mathbf{x})=g\left(w_{0}+\sum_{i=1}^{d} w_{i} x_{i}\right)=g\left(\sum_{i=0}^{d} w_{i} x_{i}\right)=g\left(\mathbf{w}^{\mathbf{T}} \mathbf{x}\right)
\]</span></p>
</section></section>
<section>
<section id="from-neurons-to-neural-networks" class="title-slide slide level1 center">
<h1>From neurons to neural networks</h1>
</section>
<section id="the-basic-neural-network" class="slide level2 smaller">
<h2>The basic neural network</h2>
<p>Following with the brain analogy one can combine (artificial) neurons to create better learners.</p>
<p>A simple artificial neural network is usually created by combining two types of modifications to the basic perceptron (AN).</p>
<ul>
<li>Stacking several neurons insteads of just one.</li>
<li>Adding an additional layer of neurons, which is call a <em>hidden</em> layer,</li>
</ul>
<p>This yields a system where the output of a can be the input of another in many different ways.</p>
</section>
<section id="an-artificial-neural-network" class="slide level2">
<h2>An Artificial Neural network</h2>
<img data-src="images/nn.jpg" class="quarto-figure quarto-figure-center r-stretch" style="width:90.0%"></section>
<section id="the-architecture-of-ann" class="slide level2 smaller">
<h2>The architecture of ANN</h2>
<p>In this figure, we have used circles to also denote the inputs to the network.</p>
<ul>
<li><p>Circles labeled +1 are <em>bias units</em>, and correspond to the intercept term.</p></li>
<li><p>The leftmost layer of the network is called the <em>input layer</em>.</p></li>
<li><p>The rightmost layer of the network is called the <em>output</em> layer.</p></li>
<li><p>The middle layer of nodes is called the <em>hidden layer</em>, because its values are not observed in the training set.</p></li>
</ul>
<p>Bias nodes are not counted when stating the neuron size.</p>
<p>With all this in mind our example neural network has three layers with:</p>
<ul>
<li>3 input units (not counting the bias unit),</li>
<li>3 hidden units,<br>
</li>
<li>1 output unit.</li>
</ul>
</section>
<section id="how-an-ann-works" class="slide level2">
<h2>How an ANN works</h2>
<p>An ANN is a predictive model (a <em>learner</em>) whose properties and behaviour can be well characterized.</p>
<!-- In practice this means: -->
<ul>
<li><p>It operates through a process known as <em>forward propagation</em>, which encompasses the information flow from the input layer to the output layer.</p></li>
<li><p>Forward propagation is performed by composing a series of linear and non-linear (activation) functions.</p></li>
<li><p>These are characterized (parametrized) by their <em>weights</em> and <em>biases</em>, that need to be <em>learnt</em>.</p>
<ul>
<li>This is done by <em>training the ANN</em>.</li>
</ul></li>
</ul>
</section>
<section id="training-the-ann" class="slide level2 smaller">
<h2>Training the ANN</h2>
<ul>
<li><p>In order for the ANN to perform well, the training process aims at finding the best possible parameter values for the learning task defined by the fnctions. This is done by</p>
<ul>
<li>Selecting an appropriate (convex) loss function,</li>
<li>Finding those weights that minimize a the total <em>cost</em> function (avg. loss).</li>
</ul></li>
<li><p>This is usually done using some iterative optimization procedure such as <em>gradient descent</em>.</p>
<ul>
<li>This requires evaluating derivatives in a huge number of points.</li>
<li>Such high number may be reduced by <em>Stochastic Gradient Descent</em>.</li>
<li>The evaluation of derivatives is simplified thanks to <em>Backpropagation</em>.</li>
</ul></li>
</ul>
</section>
<section id="multiple-architectures-for-ann" class="slide level2">
<h2>Multiple architectures for ANN</h2>
<ul>
<li><p>We have so far focused on a single hidden layer neural network of the example.</p></li>
<li><p>One can. however build neural networks with many distinct architectures (meaning patterns of connectivity between neurons), including ones with multiple hidden layers.</p></li>
<li><p>See <a href="https://www.asimovinstitute.org/neural-network-zoo/">here the Neural Network Zoo</a>.</p></li>
</ul>
</section>
<section id="multiple-architectures-for-ann-1" class="slide level2 smaller">
<h2>Multiple architectures for ANN</h2>
<div class="columns">
<div class="column" style="width:50%;">
<ul>
<li><p>We have so far focused on a single hidden layer neural network of the example</p></li>
<li><p>One can build neural networks with many distinct architectures (meaning patterns of connectivity between neurons), including ones with multiple hidden layers.</p></li>
</ul>
</div><div class="column" style="width:50%;">
<p><img data-src="images/2.1-Introduction_to_ANN-Slides_insertimage_3.png"> <a href="https://www.asimovinstitute.org/neural-network-zoo/">The Neural Network Zoo</a></p>
</div>
</div>
</section>
<section id="multiple-layer-dense-networks" class="slide level2">
<h2>Multiple layer dense Networks</h2>
<ul>
<li>Most common choice is a <span class="math inline">\(n_l\)</span>-layered network:
<ul>
<li>layer 1 is the input layer,</li>
<li>layer <span class="math inline">\(n_l\)</span> is the output layer,</li>
<li>and each layer <span class="math inline">\(l\)</span> is densely connected to layer <span class="math inline">\(l+1\)</span>.</li>
</ul></li>
<li>In this setting, to compute the output of the network, we can compute all the activations in layer <span class="math inline">\(L_2\)</span>, then layer <span class="math inline">\(L_3\)</span>, and so on, up to layer <span class="math inline">\(L_{nl}\)</span>, using equations seen previously.</li>
</ul>
</section>
<section id="feed-forward-nns" class="slide level2">
<h2>Feed Forward NNs</h2>
<ul>
<li>The type of NN described is called feed-forward <em>neural network (FFNN)</em>, since
<ul>
<li>All computations are done by Forward propagation</li>
<li>The connectivity graph does not have any directed loops or cycles.</li>
</ul></li>
</ul>
</section></section>
<section>
<section id="an-example-using-r" class="title-slide slide level1 center">
<h1>An example using R</h1>
</section>
<section id="a-predictive-ann" class="slide level2">
<h2>A predictive ANN</h2>
<p>We use the <code>neuralnet</code> package to build a simple neural network to predict if a type of stock pays dividends or not.</p>
<div class="cell">
<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode numberSource r number-lines code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href=""></a><span class="cf">if</span> (<span class="sc">!</span><span class="fu">require</span>(neuralnet)) </span>
<span id="cb1-2"><a href=""></a> <span class="fu">install.packages</span>(<span class="st">"neuralnet"</span>, <span class="at">dep=</span><span class="cn">TRUE</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</section>
<section id="data-for-the-example" class="slide level2">
<h2>Data for the example</h2>
<p>And use the <code>dividendinfo.csv</code> dataset from <a href="https://github.com/MGCodesandStats/datasets" class="uri">https://github.com/MGCodesandStats/datasets</a></p>
<div class="cell">
<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode numberSource r number-lines code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href=""></a>mydata <span class="ot"><-</span> <span class="fu">read.csv</span>(<span class="st">"https://raw.githubusercontent.com/MGCodesandStats/datasets/master/dividendinfo.csv"</span>)</span>
<span id="cb2-2"><a href=""></a><span class="fu">str</span>(mydata)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>'data.frame': 200 obs. of 6 variables:
$ dividend : int 0 1 1 0 1 1 1 0 1 1 ...
$ fcfps : num 2.75 4.96 2.78 0.43 2.94 3.9 1.09 2.32 2.5 4.46 ...
$ earnings_growth: num -19.25 0.83 1.09 12.97 2.44 ...
$ de : num 1.11 1.09 0.19 1.7 1.83 0.46 2.32 3.34 3.15 3.33 ...
$ mcap : int 545 630 562 388 684 621 656 351 658 330 ...
$ current_ratio : num 0.924 1.469 1.976 1.942 2.487 ...</code></pre>
</div>
</div>
</section>
<section id="data-pre-processing" class="slide level2">
<h2>Data pre-processing</h2>
<div class="cell">
<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode numberSource r number-lines code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href=""></a>normalize <span class="ot"><-</span> <span class="cf">function</span>(x) {</span>
<span id="cb4-2"><a href=""></a> <span class="fu">return</span> ((x <span class="sc">-</span> <span class="fu">min</span>(x)) <span class="sc">/</span> (<span class="fu">max</span>(x) <span class="sc">-</span> <span class="fu">min</span>(x)))</span>
<span id="cb4-3"><a href=""></a>}</span>
<span id="cb4-4"><a href=""></a>normData <span class="ot"><-</span> <span class="fu">as.data.frame</span>(<span class="fu">lapply</span>(mydata, normalize))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</section>
<section id="test-and-training-sets" class="slide level2">
<h2>Test and training sets</h2>
<p>Finally we break our data in a test and a training set:</p>
<div class="cell">
<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode numberSource r number-lines code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href=""></a>perc2Train <span class="ot"><-</span> <span class="dv">2</span><span class="sc">/</span><span class="dv">3</span></span>
<span id="cb5-2"><a href=""></a>ssize <span class="ot"><-</span> <span class="fu">nrow</span>(normData)</span>
<span id="cb5-3"><a href=""></a><span class="fu">set.seed</span>(<span class="dv">12345</span>)</span>
<span id="cb5-4"><a href=""></a>data_rows <span class="ot"><-</span> <span class="fu">floor</span>(perc2Train <span class="sc">*</span>ssize)</span>
<span id="cb5-5"><a href=""></a>train_indices <span class="ot"><-</span> <span class="fu">sample</span>(<span class="fu">c</span>(<span class="dv">1</span><span class="sc">:</span>ssize), data_rows)</span>
<span id="cb5-6"><a href=""></a>trainset <span class="ot"><-</span> normData[train_indices,]</span>
<span id="cb5-7"><a href=""></a>testset <span class="ot"><-</span> normData[<span class="sc">-</span>train_indices,]</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</section>
<section id="training-a-neural-network" class="slide level2">
<h2>Training a neural network</h2>
<p>We train a simple NN with two hidden layers, with 4 and 2 neurons respectively.</p>
<div class="cell">
<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode numberSource r number-lines code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href=""></a><span class="co">#Neural Network</span></span>
<span id="cb6-2"><a href=""></a><span class="fu">library</span>(neuralnet)</span>
<span id="cb6-3"><a href=""></a>nn <span class="ot"><-</span> <span class="fu">neuralnet</span>(dividend <span class="sc">~</span> fcfps <span class="sc">+</span> earnings_growth <span class="sc">+</span> de <span class="sc">+</span> mcap <span class="sc">+</span> current_ratio, </span>
<span id="cb6-4"><a href=""></a> <span class="at">data=</span>trainset, </span>
<span id="cb6-5"><a href=""></a> <span class="at">hidden=</span><span class="fu">c</span>(<span class="dv">2</span>,<span class="dv">1</span>), </span>
<span id="cb6-6"><a href=""></a> <span class="at">linear.output=</span><span class="cn">FALSE</span>, </span>
<span id="cb6-7"><a href=""></a> <span class="at">threshold=</span><span class="fl">0.01</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</section>
<section id="network-plot" class="slide level2">
<h2>Network plot</h2>
<p>The output of the procedure is a neural network with estimated weights</p>
<div class="cell">
<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode numberSource r number-lines code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href=""></a><span class="fu">plot</span>(nn, <span class="at">rep =</span> <span class="st">"best"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<img data-src="4.2-Advanced_Machine_Learning_and_AI4Metabolomics_files/figure-revealjs/unnamed-chunk-18-1.png" width="960" class="r-stretch"></section>
<section id="predictions" class="slide level2">
<h2>Predictions</h2>
<div class="cell">
<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode numberSource r number-lines code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href=""></a>temp_test <span class="ot"><-</span> <span class="fu">subset</span>(testset, <span class="at">select =</span></span>
<span id="cb8-2"><a href=""></a> <span class="fu">c</span>(<span class="st">"fcfps"</span>,<span class="st">"earnings_growth"</span>, </span>
<span id="cb8-3"><a href=""></a> <span class="st">"de"</span>, <span class="st">"mcap"</span>, <span class="st">"current_ratio"</span>))</span>
<span id="cb8-4"><a href=""></a>nn.results <span class="ot"><-</span> <span class="fu">compute</span>(nn, temp_test)</span>
<span id="cb8-5"><a href=""></a>results <span class="ot"><-</span> <span class="fu">data.frame</span>(<span class="at">actual =</span> </span>
<span id="cb8-6"><a href=""></a> testset<span class="sc">$</span>dividend, </span>
<span id="cb8-7"><a href=""></a> <span class="at">prediction =</span> nn.results<span class="sc">$</span>net.result)</span>
<span id="cb8-8"><a href=""></a><span class="fu">head</span>(results)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code> actual prediction
9 1 0.9919213885
19 1 0.9769206123
22 0 0.0002187144
26 0 0.6093330933
27 1 0.7454164893
29 1 0.9515431416</code></pre>
</div>
</div>
</section>
<section id="model-evaluation" class="slide level2">
<h2>Model evaluation</h2>
<div class="cell">
<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode numberSource r number-lines code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href=""></a>roundedresults<span class="ot"><-</span><span class="fu">sapply</span>(results,round,<span class="at">digits=</span><span class="dv">0</span>)</span>
<span id="cb10-2"><a href=""></a>roundedresultsdf<span class="ot">=</span><span class="fu">data.frame</span>(roundedresults)</span>
<span id="cb10-3"><a href=""></a><span class="fu">attach</span>(roundedresultsdf)</span>
<span id="cb10-4"><a href=""></a><span class="fu">table</span>(actual,prediction)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code> prediction
actual 0 1
0 33 3
1 4 27</code></pre>
</div>
</div>
</section></section>
<section>
<section id="from-shallow-to-deep-nns" class="title-slide slide level1 center">
<h1>From shallow to Deep NNs</h1>
</section>
<section id="deep-neural-networks" class="slide level2 smaller">
<h2>Deep Neural Networks</h2>
<ul>