-
Notifications
You must be signed in to change notification settings - Fork 390
/
Stock_Screener (3).py
373 lines (294 loc) · 13.8 KB
/
Stock_Screener (3).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import urllib.request, urllib.error, urllib.parse
import time
import datetime
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
import matplotlib.dates as mdates
from mplfinance.original_flavor import candlestick_ohlc
import matplotlib
import pylab
import requests
from yahoo_fin import stock_info as si
matplotlib.rcParams.update({'font.size': 9})
evenBetter = si.tickers_dow()
def rsiFunc(prices, n=14):
deltas = np.diff(prices)
seed = deltas[:n+1]
up = seed[seed>=0].sum()/n
down = -seed[seed<0].sum()/n
rs = up/down
rsi = np.zeros_like(prices)
rsi[:n] = 100. - 100./(1.+rs)
for i in range(n, len(prices)):
delta = deltas[i-1] # the diff is 1 shorter
if delta>0:
upval = delta
downval = 0.
else:
upval = 0.
downval = -delta
up = (up*(n-1) + upval)/n
down = (down*(n-1) + downval)/n
rs = up/down
rsi[i] = 100. - 100./(1.+rs)
return rsi
def movingaverage(values,window):
weigths = np.repeat(1.0, window)/window
smas = np.convolve(values, weigths, 'valid')
return smas # as a numpy array
########EMA CALC ADDED############
def ExpMovingAverage(values, window):
weights = np.exp(np.linspace(-1., 0., window))
weights /= weights.sum()
a = np.convolve(values, weights, mode='full')[:len(values)]
a[:window] = a[window]
return a
def computeMACD(x, slow=26, fast=12):
"""
compute the MACD (Moving Average Convergence/Divergence) using a fast and slow exponential moving avg'
return value is emaslow, emafast, macd which are len(x) arrays
"""
emaslow = ExpMovingAverage(x, slow)
emafast = ExpMovingAverage(x, fast)
return emaslow, emafast, emafast - emaslow
###############################
def graphData(stock,MA1,MA2):
#######################################
#######################################
'''
Use this to dynamically pull a stock:
'''
try:
print('Currently Pulling',stock)
netIncomeAr = []
revAr = []
ROCAr = []
endLink = 'sort_order=asc&auth_token=a3fpXxHfsiN7AF4gjakQ'
try:
netIncome = urllib.request.urlopen('http://www.quandl.com/api/v1/datasets/OFDP/DMDRN_'+stock.upper()+'_NET_INC.csv?&'+endLink).read()
revenue = urllib.request.urlopen('http://www.quandl.com/api/v1/datasets/OFDP/DMDRN_'+stock.upper()+'_REV_LAST.csv?&'+endLink).read()
ROC = urllib.request.urlopen('http://www.quandl.com/api/v1/datasets/OFDP/DMDRN_'+stock.upper()+'_ROC.csv?&'+endLink).read()
splitNI = netIncome.split('\n')
print('Net Income:')
for eachNI in splitNI[1:-1]:
print(eachNI)
netIncomeAr.append(eachNI)
print('_________')
splitRev = revenue.split('\n')
print('Revenue:')
for eachRev in splitRev[1:-1]:
print(eachRev)
revAr.append(eachRev)
print('_________')
splitROC = ROC.split('\n')
print('Return on Capital:')
for eachROC in splitROC[1:-1]:
print(eachROC)
ROCAr.append(eachROC)
incomeDate, income = np.loadtxt(netIncomeAr, delimiter=',',unpack=True,
converters={ 0: mdates.strpdate2num('%Y-%m-%d')})
revDate, revenue = np.loadtxt(revAr, delimiter=',',unpack=True,
converters={ 0: mdates.strpdate2num('%Y-%m-%d')})
rocDate, ROC = np.loadtxt(ROCAr, delimiter=',',unpack=True,
converters={ 0: mdates.strpdate2num('%Y-%m-%d')})
except Exception as e:
print('failed in the quandl grab')
print(str(e))
time.sleep(555)
print(str(datetime.datetime.fromtimestamp(int(time.time())).strftime('%Y-%m-%d %H:%M:%S')))
#Keep in mind this is close high low open, lol.
urlToVisit = 'http://chartapi.finance.yahoo.com/instrument/1.0/'+stock+'/chartdata;type=quote;range=10y/csv'
stockFile =[]
try:
sourceCode = urllib.request.urlopen(urlToVisit).read()
splitSource = sourceCode.split('\n')
for eachLine in splitSource:
splitLine = eachLine.split(',')
if len(splitLine)==6:
if 'values' not in eachLine:
stockFile.append(eachLine)
except Exception as e:
print(str(e), 'failed to organize pulled data.')
except Exception as e:
print(str(e), 'failed to pull pricing data')
#######################################
#######################################
try:
date, closep, highp, lowp, openp, volume = np.loadtxt(stockFile,delimiter=',', unpack=True,
converters={ 0: mdates.strpdate2num('%Y%m%d')})
x = 0
y = len(date)
newAr = []
while x < y:
appendLine = date[x],openp[x],closep[x],highp[x],lowp[x],volume[x]
newAr.append(appendLine)
x+=1
Av1 = movingaverage(closep, MA1)
Av2 = movingaverage(closep, MA2)
SP = len(date[MA2-1:])
fig = plt.figure(facecolor='#07000d')
ax1 = plt.subplot2grid((9,4), (1,0), rowspan=4, colspan=4, axisbg='#07000d')
candlestick_ohlc(ax1, newAr[-SP:], width=.6, colorup='#53c156', colordown='#ff1717')
Label1 = str(MA1)+' SMA'
Label2 = str(MA2)+' SMA'
ax1.plot(date[-SP:],Av1[-SP:],'#e1edf9',label=Label1, linewidth=1.5)
ax1.plot(date[-SP:],Av2[-SP:],'#4ee6fd',label=Label2, linewidth=1.5)
ax1.grid(True, color='w')
ax1.xaxis.set_major_locator(mticker.MaxNLocator(10))
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
ax1.yaxis.label.set_color("w")
ax1.spines['bottom'].set_color("#5998ff")
ax1.spines['top'].set_color("#5998ff")
ax1.spines['left'].set_color("#5998ff")
ax1.spines['right'].set_color("#5998ff")
ax1.tick_params(axis='y', colors='w')
plt.gca().yaxis.set_major_locator(mticker.MaxNLocator(prune='upper'))
ax1.tick_params(axis='x', colors='w')
plt.ylabel('Stock price and Volume')
maLeg = plt.legend(loc=9, ncol=2, prop={'size':7},
fancybox=True, borderaxespad=0.)
maLeg.get_frame().set_alpha(0.4)
textEd = pylab.gca().get_legend().get_texts()
pylab.setp(textEd[0:5], color = 'w')
volumeMin = 0
ax0 = plt.subplot2grid((9,4), (0,0), sharex=ax1, rowspan=1, colspan=4, axisbg='#07000d')
rsi = rsiFunc(closep)
rsiCol = '#c1f9f7'
posCol = '#386d13'
negCol = '#8f2020'
ax0.plot(date[-SP:], rsi[-SP:], rsiCol, linewidth=1.5)
ax0.axhline(70, color=negCol)
ax0.axhline(30, color=posCol)
ax0.fill_between(date[-SP:], rsi[-SP:], 70, where=(rsi[-SP:]>=70), facecolor=negCol, edgecolor=negCol, alpha=0.5)
ax0.fill_between(date[-SP:], rsi[-SP:], 30, where=(rsi[-SP:]<=30), facecolor=posCol, edgecolor=posCol, alpha=0.5)
ax0.set_yticks([30,70])
ax0.yaxis.label.set_color("w")
ax0.spines['bottom'].set_color("#5998ff")
ax0.spines['top'].set_color("#5998ff")
ax0.spines['left'].set_color("#5998ff")
ax0.spines['right'].set_color("#5998ff")
ax0.tick_params(axis='y', colors='w')
ax0.tick_params(axis='x', colors='w')
plt.ylabel('RSI')
ax1v = ax1.twinx()
ax1v.fill_between(date[-SP:],volumeMin, volume[-SP:], facecolor='#00ffe8', alpha=.4)
ax1v.axes.yaxis.set_ticklabels([])
ax1v.grid(False)
###Edit this to 3, so it's a bit larger
ax1v.set_ylim(0, 3*volume.max())
ax1v.spines['bottom'].set_color("#5998ff")
ax1v.spines['top'].set_color("#5998ff")
ax1v.spines['left'].set_color("#5998ff")
ax1v.spines['right'].set_color("#5998ff")
ax1v.tick_params(axis='x', colors='w')
ax1v.tick_params(axis='y', colors='w')
ax2 = plt.subplot2grid((9,4), (5,0), sharex=ax1, rowspan=1, colspan=4, axisbg='#07000d')
fillcolor = '#00ffe8'
nslow = 26
nfast = 12
nema = 9
emaslow, emafast, macd = computeMACD(closep)
ema9 = ExpMovingAverage(macd, nema)
ax2.plot(date[-SP:], macd[-SP:], color='#4ee6fd', lw=2)
ax2.plot(date[-SP:], ema9[-SP:], color='#e1edf9', lw=1)
ax2.fill_between(date[-SP:], macd[-SP:]-ema9[-SP:], 0, alpha=0.5, facecolor=fillcolor, edgecolor=fillcolor)
plt.gca().yaxis.set_major_locator(mticker.MaxNLocator(prune='upper'))
ax2.spines['bottom'].set_color("#5998ff")
ax2.spines['top'].set_color("#5998ff")
ax2.spines['left'].set_color("#5998ff")
ax2.spines['right'].set_color("#5998ff")
ax2.tick_params(axis='x', colors='w')
ax2.tick_params(axis='y', colors='w')
plt.ylabel('MACD', color='w')
ax2.yaxis.set_major_locator(mticker.MaxNLocator(nbins=5, prune='upper'))
######################################
######################################
ax3 = plt.subplot2grid((9,4), (6,0), sharex=ax1, rowspan=1, colspan=4, axisbg='#07000d')
ax3.plot(incomeDate,income,'#4ee6fd')
ax3.spines['bottom'].set_color("#5998ff")
ax3.spines['top'].set_color("#5998ff")
ax3.spines['left'].set_color("#5998ff")
ax3.spines['right'].set_color("#5998ff")
ax3.tick_params(axis='x', colors='w')
ax3.tick_params(axis='y', colors='w')
ax3.yaxis.set_major_locator(mticker.MaxNLocator(nbins=4, prune='upper'))
plt.ylabel('NI', color='w')
ax4 = plt.subplot2grid((9,4), (7,0),sharex=ax1, rowspan=1, colspan=4, axisbg='#07000d')
ax4.plot(revDate, revenue,'#4ee6fd')
ax4.spines['bottom'].set_color("#5998ff")
ax4.spines['top'].set_color("#5998ff")
ax4.spines['left'].set_color("#5998ff")
ax4.spines['right'].set_color("#5998ff")
ax4.tick_params(axis='x', colors='w')
ax4.tick_params(axis='y', colors='w')
ax4.yaxis.set_major_locator(mticker.MaxNLocator(nbins=4, prune='upper'))
plt.ylabel('Rev', color='w')
ax5 = plt.subplot2grid((9,4), (8,0), rowspan=1, sharex=ax1, colspan=4, axisbg='#07000d')
ax5.plot(rocDate, ROC,'#4ee6fd')
ax5.spines['bottom'].set_color("#5998ff")
ax5.spines['top'].set_color("#5998ff")
ax5.spines['left'].set_color("#5998ff")
ax5.spines['right'].set_color("#5998ff")
ax5.tick_params(axis='x', colors='w')
ax5.tick_params(axis='y', colors='w')
ax5.yaxis.set_major_locator(mticker.MaxNLocator(nbins=4, prune='upper'))
plt.ylabel('ROC', color='w')
for label in ax5.xaxis.get_ticklabels():
label.set_rotation(45)
plt.suptitle(stock,color='w')
plt.setp(ax0.get_xticklabels(), visible=False)
### add this ####
plt.setp(ax1.get_xticklabels(), visible=False)
plt.setp(ax2.get_xticklabels(), visible=False)
plt.setp(ax3.get_xticklabels(), visible=False)
plt.setp(ax4.get_xticklabels(), visible=False)
plt.subplots_adjust(left=.09, bottom=.14, right=.94, top=.95, wspace=.20, hspace=0)
plt.show()
fig.savefig('example.png',facecolor=fig.get_facecolor())
except Exception as e:
print('main loop',str(e))
def screener(stock):
try:
#print 'doing',stock
sourceCode = urllib.request.urlopen('http://finance.yahoo.com/q/ks?s='+stock).read()
pbr = sourceCode.split('Price/Book (mrq):</td><td class="yfnc_tabledata1">')[1].split('</td>')[0]
#print 'price to book ratio:',stock,pbr
if float(pbr) < 1:
#print 'price to book ratio:',stock,pbr
PEG5 = sourceCode.split('PEG Ratio (5 yr expected)<font size="-1"><sup>1</sup></font>:</td><td class="yfnc_tabledata1">')[1].split('</td>')[0]
if 0 < float(PEG5) < 2:
#print 'PEG forward 5 years',PEG5
DE = sourceCode.split('Total Debt/Equity (mrq):</td><td class="yfnc_tabledata1">')[1].split('</td>')[0]
#print 'Debt to Equity:',DE
#if 0 < float(DE) < 2:
PE12 = sourceCode.split('Trailing P/E (ttm, intraday):</td><td class="yfnc_tabledata1">')[1].split('</td>')[0]
#print 'Trailing PE (12mo):',PE12
if float(PE12) < 15:
# Your own SCREENED array....
#evenBetter.append(stock)
print('______________________________________')
print('')
print(stock,'meets requirements')
print('price to book:',pbr)
print('PEG forward 5 years',PEG5)
print('Trailing PE (12mo):',PE12)
print('Debt to Equity:',DE)
print('______________________________________')
if showCharts.lower() == 'y':
try:
graphData(stock,25,50)
except Exception as e:
print('failed the main quandl loop for reason of',str(e))
except Exception as e:
#print 'failed in the main loop',str(e)
pass
showCharts = input('Would you like to show the financial data (Quandl) charts? (Y/N): ')
if showCharts.lower()=='y':
print('okay, charts will be shown')
elif showCharts.lwoer()=='n':
print('okay, charts will NOT be shown.')
else:
print('invalid input, charts will NOT be shown.')
for eachStock in evenBetter:
screener(eachStock)