Skip to content

Latest commit

 

History

History
91 lines (62 loc) · 2.25 KB

README.md

File metadata and controls

91 lines (62 loc) · 2.25 KB

bulgarian-nlp

Part-Of-Speech tagging and Named Entity Recognition for Bulgarian.

Usage

First clone the repository and make sure the transformers library is installed

git clone https://github.com/amontgomerie/bulgarian-nlp
cd bulgarian-nlp

Text Annotation

POS and NER tags can be generated at the same time using the TextAnnotator.

from annotation.annotators import TextAnnotator

annotator = TextAnnotator()
annotator('България е член на ЕС.')

This returns a dictionary containing tokens and entities.

  • tokens contains:
    • text: the word or punctuation mark
    • pos: POS tag
    • entity: IOB tag
  • entities contains:
    • text: an entity (may be made up of more than one token)
    • type: the type of entity

The output of the above example is:

{'entities': [{'text': 'България', 'type': 'LOCATION'},
  {'text': 'ЕС', 'type': 'ORGANISATION'}],
 'tokens': [{'entity': 'B-LOC', 'pos': 'PROPN', 'text': 'България'},
  {'entity': 'O', 'pos': 'AUX', 'text': 'е'},
  {'entity': 'O', 'pos': 'NOUN', 'text': 'член'},
  {'entity': 'O', 'pos': 'ADP', 'text': 'на'},
  {'entity': 'B-ORG', 'pos': 'PROPN', 'text': 'ЕС'},
  {'entity': 'O', 'pos': 'PUNCT', 'text': '.'}]}

If only one type of tag is required (POS or NER), the relevant tagger can be instantiated individually.

Part-Of-Speech tagging

POS tags can be generated like this:

from annotation.taggers import POSTagger

pos_tagger = POSTagger()
pos_tagger.generate_tags('Аз сьм мьж.')

Which will generate:

['PRON', 'VERB', 'NOUN', 'PUNCT']

For more information about the POS tags, see https://universaldependencies.org/u/pos/

Named Entity Recognition

NER tags can be generated using:

from annotation.taggers import NERTagger

ner_tagger = NERTagger()
ner_tagger.generate_tags('България е член на ЕС в Европа.')

Which outputs:

['B-LOC', 'O', 'O', 'O', 'B-ORG', 'O', 'B-LOC', 'O']

For more information about the NER tag format, see https://en.wikipedia.org/wiki/Inside%E2%80%93outside%E2%80%93beginning_(tagging)

Known Issues

  • The POS tagger sometimes misclassifies verbs.
  • The NER tagger is not very good at identifying products or events.