-
Notifications
You must be signed in to change notification settings - Fork 0
/
loss.py
47 lines (30 loc) · 1.49 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import keras.backend as K
import tensorflow as tf
def weighted_crossentropy(y_true, y_pred):
y_pred = y_pred[:,:,:,1:7,:]
y_true = y_true[:,:,:,1:7,:]
y_pred_f = K.reshape(y_pred, (-1,3))
y_true_f = K.reshape(y_true, (-1,))
soft_pred_f = K.softmax(y_pred_f)
soft_pred_f = K.log(tf.clip_by_value(soft_pred_f, 1e-10, 1.0))
neg = K.equal(y_true_f, K.zeros_like(y_true_f))
neg_calculoss = tf.gather(soft_pred_f[:,0], tf.where(neg))
pos1 = K.equal(y_true_f, K.ones_like(y_true_f))
pos1_calculoss = tf.gather(soft_pred_f[:,1], tf.where(pos1))
pos2 = K.equal(y_true_f, 2*K.ones_like(y_true_f))
pos2_calculoss = tf.gather(soft_pred_f[:,2], tf.where(pos2))
loss = -K.mean(tf.concat([0.78*neg_calculoss, 0.65*pos1_calculoss, 8.57*pos2_calculoss], 0))
return loss
def weighted_crossentropy_2ddense(y_true, y_pred):
y_pred_f = K.reshape(y_pred, (-1,3))
y_true_f = K.reshape(y_true, (-1,))
soft_pred_f = K.softmax(y_pred_f)
soft_pred_f = K.log(tf.clip_by_value(soft_pred_f, 1e-10, 1.0))
neg = K.equal(y_true_f, K.zeros_like(y_true_f))
neg_calculoss = tf.gather(soft_pred_f[:,0], tf.where(neg))
pos1 = K.equal(y_true_f, K.ones_like(y_true_f))
pos1_calculoss = tf.gather(soft_pred_f[:,1], tf.where(pos1))
pos2 = K.equal(y_true_f, 2*K.ones_like(y_true_f))
pos2_calculoss = tf.gather(soft_pred_f[:,2], tf.where(pos2))
loss = -K.mean(tf.concat([0.78*neg_calculoss, 0.65*pos1_calculoss, 8.57*pos2_calculoss], 0))
return loss