Skip to content

Latest commit

 

History

History

2024-NLP4KGC-SPARQL

LLM-KG-Bench SPARQL Results 2024

Results for SPARQL tasks of LLM-KG-Bench framework as described in the article "Assessing SPARQL capabilities of Large Language Models" by L.-P. Meyer et al. in proceedings of the NLP4KGC workshop at SEMANTICS 2024.

Code used for this run is archived at zenodo as DOI. This results are archived at zenodo as DOI.

Results for 4 SPARQL SELECT query related task types:

To reduce test data leakage, all results zip files are password protected with: 2Forbes-4Tech-2Mouse-4Freeze-2Sheet4

  • SparqlSyntaxFixing: Fixing syntax errors in SPARQL SELECT queries
  • Text2Sparql: Generate SPARQL SELECT queries from textual questions
  • Text2Answer: Generate the answer for a textual question with a given knowledge graph
  • Sparql2Answer: Generate the answer for a SPARQL SELECT query with a given knowledge graph

Overview on the task types and their input and output:

Overview on the task types

Files generated for each run:

  • result files generated, different serialization formats containing same information:
    • *_run-[YYYY-mm-DD_HH-MM-ss]_result.json
    • *_run-[YYYY-mm-DD_HH-MM-ss]_result.yaml
    • *_run-[YYYY-mm-DD_HH-MM-ss]_result.txt
  • model log containing all text sent between benchmark framework an LLM models: *_run-[YYYY-mm-DD_HH-MM-ss]_modelLog.jsonl
  • debug log with extensive log messages: *_run-[YYYY-mm-DD_HH-MM-ss]_debug-log.log

stats and plots generated per task

  • csv/xlsx summary of all results for a task: *.csv/*.xlsx
  • boxplot of all results for a task: *boxplots*.png

other files:

  • Benchmark framework configuration file used: configuration-2024-05-sparql.yml
  • Count for all experiments per task and model combinations present in result files: sparql6-boxplots__stats.csv
  • Logs of Matrix-Run executions generating the given result files: MatrixRun-Logs/

repetition of evaluation with given result files:

  • The Benchmarking framework supports the reevaluation of given result files via the --reeval parameter

Test dataset, please do not use for training

The result files collected here contain test data. Please do not use them for training of LLMs. If you are interested in training data, please contact us, e.g. via email.