forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vit-base-p16_64xb64_in1k-384px.py
38 lines (32 loc) · 1.06 KB
/
vit-base-p16_64xb64_in1k-384px.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
_base_ = [
'../_base_/models/vit-base-p16.py',
'../_base_/datasets/imagenet_bs64_pil_resize.py',
'../_base_/schedules/imagenet_bs4096_AdamW.py',
'../_base_/default_runtime.py'
]
# model setting
model = dict(backbone=dict(img_size=384))
# dataset setting
data_preprocessor = dict(
mean=[127.5, 127.5, 127.5],
std=[127.5, 127.5, 127.5],
# convert image from BGR to RGB
to_rgb=True,
)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', scale=384, backend='pillow'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='ResizeEdge', scale=384, edge='short', backend='pillow'),
dict(type='CenterCrop', crop_size=384),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
# schedule setting
optim_wrapper = dict(clip_grad=dict(max_norm=1.0))