forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvit-base-p16_4xb544-ipu_in1k.py
114 lines (100 loc) · 3.32 KB
/
vit-base-p16_4xb544-ipu_in1k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
_base_ = [
'../_base_/models/vit-base-p16.py',
'../_base_/datasets/imagenet_bs64_pil_resize_autoaug.py',
'../_base_/default_runtime.py'
]
# specific to vit pretrain
paramwise_cfg = dict(custom_keys={
'.cls_token': dict(decay_mult=0.0),
'.pos_embed': dict(decay_mult=0.0)
})
pretrained = 'https://download.openmmlab.com/mmclassification/v0/vit/pretrain/vit-base-p16_3rdparty_pt-64xb64_in1k-224_20210928-02284250.pth' # noqa
model = dict(
head=dict(
loss=dict(type='CrossEntropyLoss', loss_weight=1.0, _delete_=True), ),
backbone=dict(
img_size=224,
init_cfg=dict(
type='Pretrained',
checkpoint=pretrained,
_delete_=True,
prefix='backbone')))
img_norm_cfg = dict(
mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', scale=224, backend='pillow'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='ToHalf', keys=['img']),
dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', scale=(224, -1), keep_ratio=True, backend='pillow'),
dict(type='CenterCrop', crop_size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToHalf', keys=['img']),
dict(type='Collect', keys=['img'])
]
# change batch size
data = dict(
samples_per_gpu=17,
workers_per_gpu=16,
drop_last=True,
train=dict(pipeline=train_pipeline),
train_dataloader=dict(mode='async'),
val=dict(pipeline=test_pipeline, ),
val_dataloader=dict(samples_per_gpu=4, workers_per_gpu=1),
test=dict(pipeline=test_pipeline),
test_dataloader=dict(samples_per_gpu=4, workers_per_gpu=1))
# optimizer
optimizer = dict(
type='SGD',
lr=0.08,
weight_decay=1e-5,
momentum=0.9,
paramwise_cfg=paramwise_cfg,
)
# learning policy
param_scheduler = [
dict(type='LinearLR', start_factor=0.02, by_epoch=False, begin=0, end=800),
dict(
type='CosineAnnealingLR',
T_max=4200,
by_epoch=False,
begin=800,
end=5000)
]
# ipu cfg
# model partition config
ipu_model_cfg = dict(
train_split_edges=[
dict(layer_to_call='backbone.patch_embed', ipu_id=0),
dict(layer_to_call='backbone.layers.3', ipu_id=1),
dict(layer_to_call='backbone.layers.6', ipu_id=2),
dict(layer_to_call='backbone.layers.9', ipu_id=3)
],
train_ckpt_nodes=['backbone.layers.{}'.format(i) for i in range(12)])
# device config
options_cfg = dict(
randomSeed=42,
partialsType='half',
train_cfg=dict(
executionStrategy='SameAsIpu',
Training=dict(gradientAccumulation=32),
availableMemoryProportion=[0.3, 0.3, 0.3, 0.3],
),
eval_cfg=dict(deviceIterations=1, ),
)
# add model partition config and device config to runner
runner = dict(
type='IterBasedRunner',
ipu_model_cfg=ipu_model_cfg,
options_cfg=options_cfg,
max_iters=5000)
default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=1000))
fp16 = dict(loss_scale=256.0, velocity_accum_type='half', accum_type='half')