forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
t2t-vit-t-14_8xb64_in1k.py
49 lines (44 loc) · 1.29 KB
/
t2t-vit-t-14_8xb64_in1k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
_base_ = [
'../_base_/models/t2t-vit-t-14.py',
'../_base_/datasets/imagenet_bs64_t2t_224.py',
'../_base_/default_runtime.py',
]
# schedule settings
optim_wrapper = dict(
optimizer=dict(type='AdamW', lr=5e-4, weight_decay=0.05),
paramwise_cfg=dict(
norm_decay_mult=0.0,
bias_decay_mult=0.0,
custom_keys={'cls_token': dict(decay_mult=0.0)},
),
)
param_scheduler = [
# warm up learning rate scheduler
dict(
type='LinearLR',
start_factor=1e-6,
by_epoch=True,
begin=0,
end=10,
# update by iter
convert_to_iter_based=True),
# main learning rate scheduler
dict(
type='CosineAnnealingLR',
T_max=290,
eta_min=1e-5,
by_epoch=True,
begin=10,
end=300),
# cool down learning rate scheduler
dict(type='ConstantLR', factor=0.1, by_epoch=True, begin=300, end=310),
]
train_cfg = dict(by_epoch=True, max_epochs=310, val_interval=1)
val_cfg = dict()
test_cfg = dict()
# runtime settings
custom_hooks = [dict(type='EMAHook', momentum=4e-5, priority='ABOVE_NORMAL')]
# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
# base_batch_size = (8 GPUs) x (64 samples per GPU)
auto_scale_lr = dict(base_batch_size=512)