forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathswav_resnet50_8xb32-mcrop-coslr-200e_in1k-224px-96px.py
159 lines (151 loc) · 4.03 KB
/
swav_resnet50_8xb32-mcrop-coslr-200e_in1k-224px-96px.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
_base_ = [
'../_base_/schedules/imagenet_lars_coslr_200e.py',
'../_base_/default_runtime.py',
]
# dataset settings
dataset_type = 'ImageNet'
data_root = 'data/imagenet/'
data_preprocessor = dict(
type='SelfSupDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True)
num_crops = [2, 6]
color_distort_strength = 1.0
view_pipeline1 = [
dict(
type='RandomResizedCrop',
scale=224,
crop_ratio_range=(0.14, 1.),
backend='pillow'),
dict(
type='RandomApply',
transforms=[
dict(
type='ColorJitter',
brightness=0.8 * color_distort_strength,
contrast=0.8 * color_distort_strength,
saturation=0.8 * color_distort_strength,
hue=0.2 * color_distort_strength)
],
prob=0.8),
dict(
type='RandomGrayscale',
prob=0.2,
keep_channels=True,
channel_weights=(0.114, 0.587, 0.2989)),
dict(
type='GaussianBlur',
magnitude_range=(0.1, 2.0),
magnitude_std='inf',
prob=0.5),
dict(type='RandomFlip', prob=0.5),
]
view_pipeline2 = [
dict(
type='RandomResizedCrop',
scale=96,
crop_ratio_range=(0.05, 0.14),
backend='pillow'),
dict(
type='RandomApply',
transforms=[
dict(
type='ColorJitter',
brightness=0.8 * color_distort_strength,
contrast=0.8 * color_distort_strength,
saturation=0.8 * color_distort_strength,
hue=0.2 * color_distort_strength)
],
prob=0.8),
dict(
type='RandomGrayscale',
prob=0.2,
keep_channels=True,
channel_weights=(0.114, 0.587, 0.2989)),
dict(
type='GaussianBlur',
magnitude_range=(0.1, 2.0),
magnitude_std='inf',
prob=0.5),
dict(type='RandomFlip', prob=0.5),
]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiView',
num_views=num_crops,
transforms=[view_pipeline1, view_pipeline2]),
dict(type='PackInputs')
]
batch_size = 32
train_dataloader = dict(
batch_size=batch_size,
num_workers=8,
drop_last=True,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='meta/train.txt',
data_prefix=dict(img_path='train/'),
pipeline=train_pipeline))
# model settings
model = dict(
type='SwAV',
data_preprocessor=dict(
mean=(123.675, 116.28, 103.53),
std=(58.395, 57.12, 57.375),
to_rgb=True),
backbone=dict(
type='ResNet',
depth=50,
norm_cfg=dict(type='SyncBN'),
zero_init_residual=True),
neck=dict(
type='SwAVNeck',
in_channels=2048,
hid_channels=2048,
out_channels=128,
with_avg_pool=True),
head=dict(
type='SwAVHead',
loss=dict(
type='SwAVLoss',
feat_dim=128, # equal to neck['out_channels']
epsilon=0.05,
temperature=0.1,
num_crops=num_crops,
)))
# optimizer
optim_wrapper = dict(type='OptimWrapper', optimizer=dict(type='LARS', lr=0.6))
find_unused_parameters = True
# learning policy
param_scheduler = [
dict(
type='CosineAnnealingLR',
T_max=200,
eta_min=6e-4,
by_epoch=True,
begin=0,
end=200,
convert_to_iter_based=True)
]
# runtime settings
default_hooks = dict(
# only keeps the latest 3 checkpoints
checkpoint=dict(type='CheckpointHook', interval=10, max_keep_ckpts=3))
# additional hooks
custom_hooks = [
dict(
type='SwAVHook',
priority='VERY_HIGH',
batch_size=batch_size,
epoch_queue_starts=15,
crops_for_assign=[0, 1],
feat_dim=128,
queue_length=3840,
frozen_layers_cfg=dict(prototypes=5005))
]