forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
metafile.yml
43 lines (42 loc) · 1.52 KB
/
metafile.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
Collections:
- Name: CAE
Metadata:
Training Data: ImageNet-1k
Training Techniques:
- AdamW
Training Resources: 8x A100-80G GPUs
Architecture:
- ViT
Paper:
Title: Context Autoencoder for Self-Supervised Representation Learning
URL: https://arxiv.org/abs/2202.03026
README: configs/cae/README.md
Models:
- Name: cae_beit-base-p16_8xb256-amp-coslr-300e_in1k
Metadata:
Epochs: 300
Batch Size: 2048
FLOPs: 17581976064
Parameters: 288429952
Training Data: ImageNet-1k
In Collection: CAE
Results: null
Weights: https://download.openmmlab.com/mmselfsup/1.x/cae/cae_vit-base-p16_8xb256-amp-coslr-300e_in1k/cae_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221230-808170f3.pth
Config: configs/cae/cae_beit-base-p16_8xb256-amp-coslr-300e_in1k.py
Downstream:
- beit-base-p16_cae-pre_8xb128-coslr-100e_in1k
- Name: beit-base-p16_cae-pre_8xb128-coslr-100e_in1k
Metadata:
Epochs: 100
Batch Size: 1024
FLOPs: 17581219584
Parameters: 86682280
Training Data: ImageNet-1k
In Collection: CAE
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.2
Weights: https://download.openmmlab.com/mmselfsup/1.x/cae/cae_vit-base-p16_16xb128-fp16-coslr-300e_in1k/vit-base-p16_ft-8xb128-coslr-100e-rpe_in1k/vit-base-p16_ft-8xb128-coslr-100e-rpe_in1k_20220825-f3d234cd.pth
Config: configs/cae/benchmarks/beit-base-p16_8xb128-coslr-100e_in1k.py