Skip to content

Latest commit

 

History

History
108 lines (82 loc) · 4.54 KB

2d_wholebody_pose_demo.md

File metadata and controls

108 lines (82 loc) · 4.54 KB

2D Human Whole-Body Pose Demo


2D Human Whole-Body Pose Top-Down Image Demo

Using gt human bounding boxes as input

We provide a demo script to test a single image, given gt json file.

python demo/top_down_img_demo.py \
    ${MMPOSE_CONFIG_FILE} ${MMPOSE_CHECKPOINT_FILE} \
    --img-root ${IMG_ROOT} --json-file ${JSON_FILE} \
    --out-img-root ${OUTPUT_DIR} \
    [--show --device ${GPU_ID or CPU}] \
    [--kpt-thr ${KPT_SCORE_THR}]

Examples:

python demo/top_down_img_demo.py \
    configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/coco-wholebody/hrnet_w48_coco_wholebody_384x288_dark_plus.py \
    https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_wholebody_384x288_dark-f5726563_20200918.pth \
    --img-root tests/data/coco/ --json-file tests/data/coco/test_coco.json \
    --out-img-root vis_results

To run demos on CPU:

python demo/top_down_img_demo.py \
    configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/coco-wholebody/hrnet_w48_coco_wholebody_384x288_dark_plus.py \
    https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_wholebody_384x288_dark-f5726563_20200918.pth \
    --img-root tests/data/coco/ --json-file tests/data/coco/test_coco.json \
    --out-img-root vis_results \
    --device=cpu

Using mmdet for human bounding box detection

We provide a demo script to run mmdet for human detection, and mmpose for pose estimation.

Assume that you have already installed mmdet.

python demo/top_down_img_demo_with_mmdet.py \
    ${MMDET_CONFIG_FILE} ${MMDET_CHECKPOINT_FILE} \
    ${MMPOSE_CONFIG_FILE} ${MMPOSE_CHECKPOINT_FILE} \
    --img-root ${IMG_ROOT} --img ${IMG_FILE} \
    --out-img-root ${OUTPUT_DIR} \
    [--show --device ${GPU_ID or CPU}] \
    [--bbox-thr ${BBOX_SCORE_THR} --kpt-thr ${KPT_SCORE_THR}]

Examples:

python demo/top_down_img_demo_with_mmdet.py \
    demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py \
    https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
    configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/coco-wholebody/hrnet_w48_coco_wholebody_384x288_dark_plus.py \
    https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_wholebody_384x288_dark-f5726563_20200918.pth \
    --img-root tests/data/coco/ \
    --img 000000196141.jpg \
    --out-img-root vis_results

2D Human Whole-Body Pose Top-Down Video Demo

We also provide a video demo to illustrate the results.

Assume that you have already installed mmdet.

python demo/top_down_video_demo_with_mmdet.py \
    ${MMDET_CONFIG_FILE} ${MMDET_CHECKPOINT_FILE} \
    ${MMPOSE_CONFIG_FILE} ${MMPOSE_CHECKPOINT_FILE} \
    --video-path ${VIDEO_PATH} \
    --out-video-root ${OUTPUT_VIDEO_ROOT} \
    [--show --device ${GPU_ID or CPU}] \
    [--bbox-thr ${BBOX_SCORE_THR} --kpt-thr ${KPT_SCORE_THR}]

Note that ${VIDEO_PATH} can be the local path or URL link to video file.

Examples:

python demo/top_down_video_demo_with_mmdet.py \
    demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py \
    https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
    configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/coco-wholebody/hrnet_w48_coco_wholebody_384x288_dark_plus.py \
    https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_wholebody_384x288_dark-f5726563_20200918.pth \
    --video-path https://user-images.githubusercontent.com/87690686/137440639-fb08603d-9a35-474e-b65f-46b5c06b68d6.mp4 \
    --out-video-root vis_results

Speed Up Inference

Some tips to speed up MMPose inference:

For top-down models, try to edit the config file. For example,

  1. set flip_test=False in pose_hrnet_w48_dark+.
  2. set post_process='default' in pose_hrnet_w48_dark+.
  3. use faster human bounding box detector, see MMDetection.