We provide a demo script to test a single image, given gt json file.
Hand Pose Model Preparation: The pre-trained hand pose estimation model can be downloaded from model zoo. Take onehand10k model as an example:
python demo/top_down_img_demo.py \
${MMPOSE_CONFIG_FILE} ${MMPOSE_CHECKPOINT_FILE} \
--img-root ${IMG_ROOT} --json-file ${JSON_FILE} \
--out-img-root ${OUTPUT_DIR} \
[--show --device ${GPU_ID or CPU}] \
[--kpt-thr ${KPT_SCORE_THR}]
Examples:
python demo/top_down_img_demo.py \
configs/hand/2d_kpt_sview_rgb_img/topdown_heatmap/onehand10k/res50_onehand10k_256x256.py \
https://download.openmmlab.com/mmpose/top_down/resnet/res50_onehand10k_256x256-e67998f6_20200813.pth \
--img-root tests/data/onehand10k/ --json-file tests/data/onehand10k/test_onehand10k.json \
--out-img-root vis_results
To run demos on CPU:
python demo/top_down_img_demo.py \
configs/hand/2d_kpt_sview_rgb_img/topdown_heatmap/onehand10k/res50_onehand10k_256x256.py \
https://download.openmmlab.com/mmpose/top_down/resnet/res50_onehand10k_256x256-e67998f6_20200813.pth \
--img-root tests/data/onehand10k/ --json-file tests/data/onehand10k/test_onehand10k.json \
--out-img-root vis_results \
--device=cpu
We provide a demo script to run mmdet for hand detection, and mmpose for hand pose estimation.
Assume that you have already installed mmdet.
Hand Box Model Preparation: The pre-trained hand box estimation model can be found in det model zoo.
Hand Pose Model Preparation: The pre-trained hand pose estimation model can be downloaded from pose model zoo.
python demo/top_down_img_demo_with_mmdet.py \
${MMDET_CONFIG_FILE} ${MMDET_CHECKPOINT_FILE} \
${MMPOSE_CONFIG_FILE} ${MMPOSE_CHECKPOINT_FILE} \
--img-root ${IMG_ROOT} --img ${IMG_FILE} \
--out-img-root ${OUTPUT_DIR} \
[--show --device ${GPU_ID or CPU}] \
[--bbox-thr ${BBOX_SCORE_THR} --kpt-thr ${KPT_SCORE_THR}]
python demo/top_down_img_demo_with_mmdet.py demo/mmdetection_cfg/cascade_rcnn_x101_64x4d_fpn_1class.py \
https://download.openmmlab.com/mmpose/mmdet_pretrained/cascade_rcnn_x101_64x4d_fpn_20e_onehand10k-dac19597_20201030.pth \
configs/hand/2d_kpt_sview_rgb_img/topdown_heatmap/onehand10k/res50_onehand10k_256x256.py \
https://download.openmmlab.com/mmpose/top_down/resnet/res50_onehand10k_256x256-e67998f6_20200813.pth \
--img-root tests/data/onehand10k/ \
--img 9.jpg \
--out-img-root vis_results
We also provide a video demo to illustrate the results.
Assume that you have already installed mmdet.
Hand Box Model Preparation: The pre-trained hand box estimation model can be found in det model zoo.
Hand Pose Model Preparation: The pre-trained hand pose estimation model can be found in pose model zoo.
python demo/top_down_video_demo_with_mmdet.py \
${MMDET_CONFIG_FILE} ${MMDET_CHECKPOINT_FILE} \
${MMPOSE_CONFIG_FILE} ${MMPOSE_CHECKPOINT_FILE} \
--video-path ${VIDEO_PATH} \
--out-video-root ${OUTPUT_VIDEO_ROOT} \
[--show --device ${GPU_ID or CPU}] \
[--bbox-thr ${BBOX_SCORE_THR} --kpt-thr ${KPT_SCORE_THR}]
Note that ${VIDEO_PATH}
can be the local path or URL link to video file.
Examples:
python demo/top_down_video_demo_with_mmdet.py demo/mmdetection_cfg/cascade_rcnn_x101_64x4d_fpn_1class.py \
https://download.openmmlab.com/mmpose/mmdet_pretrained/cascade_rcnn_x101_64x4d_fpn_20e_onehand10k-dac19597_20201030.pth \
configs/hand/2d_kpt_sview_rgb_img/topdown_heatmap/onehand10k/res50_onehand10k_256x256.py \
https://download.openmmlab.com/mmpose/top_down/resnet/res50_onehand10k_256x256-e67998f6_20200813.pth \
--video-path https://user-images.githubusercontent.com/87690686/137441388-3ea93d26-5445-4184-829e-bf7011def9e4.mp4 \
--out-video-root vis_results
Some tips to speed up MMPose inference:
For 2D hand pose estimation models, try to edit the config file. For example,
- set
flip_test=False
in hand-res50. - set
post_process='default'
in hand-res50.