-
Notifications
You must be signed in to change notification settings - Fork 174
/
PxMatrix.h
1497 lines (1210 loc) · 41.4 KB
/
PxMatrix.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*********************************************************************
This is a library for Chinese LED matrix displays
Written by Dominic Buchstaller.
BSD license, check license.txt for more information
*********************************************************************/
#ifndef _PxMATRIX_H
#define _PxMATRIX_H
// Color depth per primary color - the more the slower the update
#ifndef PxMATRIX_COLOR_DEPTH
#define PxMATRIX_COLOR_DEPTH 4
#endif
#if PxMATRIX_COLOR_DEPTH > 8 || PxMATRIX_COLOR_DEPTH < 1
#error "PxMATRIX_COLOR_DEPTH must be 1 to 8 bits maximum"
#endif
// Defines how long we display things by default
#ifndef PxMATRIX_DEFAULT_SHOWTIME
#define PxMATRIX_DEFAULT_SHOWTIME 30
#endif
// Defines the speed of the SPI bus (reducing this may help if you experience noisy images)
#ifndef PxMATRIX_SPI_FREQUENCY
#define PxMATRIX_SPI_FREQUENCY 20000000
#endif
// Legacy suppport
#ifdef double_buffer
#define PxMATRIX_DOUBLE_BUFFER true
#endif
#ifndef _BV
#define _BV(x) (1 << (x))
#endif
#if defined(ESP8266) || defined(ESP32)
#define SPI_TRANSFER(x,y) SPI.writeBytes(x,y)
#define SPI_BYTE(x) SPI.write(x)
#define SPI_2BYTE(x) SPI.write16(x)
#endif
#ifdef __AVR__
#define SPI_TRANSFER(x,y) SPI.transfer(x,y)
#define SPI_BYTE(x) SPI.transfer(x)
#define SPI_2BYTE(x) SPI.transfer16(x)
#endif
#include "Adafruit_GFX.h"
#include "Arduino.h"
#include <SPI.h>
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#ifdef __AVR__
#include <util/delay.h>
#endif
#include <stdlib.h>
// Sometimes some extra width needs to be passed to Adafruit GFX constructor
// to render text close to the end of the display correctly
#ifndef ADAFRUIT_GFX_EXTRA
#define ADAFRUIT_GFX_EXTRA 0
#endif
#ifdef ESP8266
#define GPIO_REG_SET(val) GPIO_REG_WRITE(GPIO_OUT_W1TS_ADDRESS,val)
#define GPIO_REG_CLEAR(val) GPIO_REG_WRITE(GPIO_OUT_W1TC_ADDRESS,val)
#endif
#ifdef ESP32
#define GPIO_REG_SET(val) GPIO.out_w1ts = val
#define GPIO_REG_CLEAR(val) GPIO.out_w1tc = val
#endif
#ifdef __AVR__
#define GPIO_REG_SET(val) (val < 8) ? PORTD |= _BV(val) : PORTB |= _BV(val-8)
#define GPIO_REG_CLEAR(val) (val < 8) ? PORTD &= ~_BV(val) : PORTB &= ~_BV(val-8)
#endif
#ifdef ESP32
#include "soc/spi_struct.h"
#include "esp32-hal-gpio.h"
struct spi_struct_t {
spi_dev_t * dev;
#if !CONFIG_DISABLE_HAL_LOCKS
xSemaphoreHandle lock;
#endif
uint8_t num;
};
#endif
// HW SPI PINS
#define SPI_BUS_CLK 14
#define SPI_BUS_MOSI 13
#define SPI_BUS_MISO 12
#define SPI_BUS_SS 4
// Specify how the Panel handles row muxing:
// BINARY: Pins A-E map to rows 1-32 via binary decoding (default)
// STRAIGHT: Pins A-D are directly mapped to rows 1-4
// SHIFTREG: A, B, C on Panel are connected to a shift register Clock, /Enable, Data
// SHIFTREG_ABC_BIN_DE: A-C are connected to Shift-Register Clock, Data, /Enable, D-E to binary decoder (crazy shit)
// SHIFTREG_SPI_SE: Like SHIFTREG, but you connect A and C on Panel to its Clock and Data output (and ground B). This will not work with fast_update enabled!
enum mux_patterns {BINARY, STRAIGHT, SHIFTREG_ABC, SHIFTREG_SPI_SE, SHIFTREG_ABC_BIN_DE};
// Specifies what blocking pattern the panel is using
// |AB|,|DB|
// |CD|,|CA|
// |AB|,|DB|
// |CD|,|CA|
enum block_patterns {ABCD, DBCA};
// This is how the scanning is implemented. LINE just scans it left to right,
// ZIGZAG jumps 4 rows after every byte, ZAGGII alse revereses every second byte
enum scan_patterns {LINE, ZIGZAG,ZZAGG, ZAGGIZ, WZAGZIG, VZAG, ZAGZIG, WZAGZIG2, ZZIAGG};
// Specifies speciffic driver chip. Most panels implement a standard shifted
// register (SHIFT). Other chips/panels may need special treatment in oder to work
enum driver_chips {SHIFT, FM6124, FM6126A};
// Specify the color order
enum color_orders {RRGGBB, RRBBGG, GGRRBB, GGBBRR, BBRRGG, BBGGRR};
#define color_step (256 / PxMATRIX_COLOR_DEPTH)
#define color_half_step (int(color_step / 2))
#define color_third_step (int(color_step / 3))
#define color_two_third_step (int(color_third_step*2))
class PxMATRIX : public Adafruit_GFX {
public:
inline PxMATRIX(uint16_t width, uint16_t height,uint8_t LATCH, uint8_t OE, uint8_t A,uint8_t B);
inline PxMATRIX(uint16_t width, uint16_t height,uint8_t LATCH, uint8_t OE, uint8_t A,uint8_t B,uint8_t C);
inline PxMATRIX(uint16_t width, uint16_t height,uint8_t LATCH, uint8_t OE, uint8_t A,uint8_t B,uint8_t C,uint8_t D);
inline PxMATRIX(uint16_t width, uint16_t height,uint8_t LATCH, uint8_t OE, uint8_t A,uint8_t B,uint8_t C,uint8_t D,uint8_t E);
inline void begin(uint8_t row_pattern, uint8_t CLK, uint8_t MOSI, uint8_t MISO, uint8_t SS);
inline void begin(uint8_t row_pattern);
inline void begin();
inline void clearDisplay(void);
inline void clearDisplay(bool selected_buffer);
// Updates the display
inline void display(uint16_t show_time);
inline void display();
// Draw pixels
inline void drawPixelRGB565(int16_t x, int16_t y, uint16_t color);
inline void drawPixel(int16_t x, int16_t y, uint16_t color);
inline void drawPixelRGB888(int16_t x, int16_t y, uint8_t r, uint8_t g,uint8_t b);
// Does nothing for now (always returns 0)
uint8_t getPixel(int8_t x, int8_t y);
// Converts RGB888 to RGB565
uint16_t color565(uint8_t r, uint8_t g, uint8_t b);
// Helpful for debugging (place in display update loop)
inline void displayTestPattern(uint16_t showtime);
// Helpful for debugging (place in display update loop)
inline void displayTestPixel(uint16_t show_time);
// FLush the buffer of the display
inline void flushDisplay();
// Rotate display
inline void setRotate(bool rotate);
// Flip display
inline void setFlip(bool flip);
// Helps to reduce display update latency on larger displays
inline void setFastUpdate(bool fast_update);
// When using double buffering, this displays the draw buffer
inline void showBuffer();
#ifdef PxMATRIX_DOUBLE_BUFFER
// This copies the display buffer to the drawing buffer (or reverse)
inline void copyBuffer(bool reverse);
#endif
// Control the minimum color values that result in an active pixel
inline void setColorOffset(uint8_t r, uint8_t g,uint8_t b);
// Set the multiplex implemention {BINARY, STRAIGHT, SHIFTREG} (default is BINARY)
inline void setMuxPattern(mux_patterns mux_pattern);
// Set the color order
inline void setColorOrder(color_orders color_order);
// Set the time in microseconds that we pause after selecting each mux channel
// (May help if some rows are missing / the mux chip is too slow)
inline void setMuxDelay(uint8_t mux_delay_A, uint8_t mux_delay_B, uint8_t mux_delay_C, uint8_t mux_delay_D, uint8_t mux_delay_E);
// Set the multiplex pattern {LINE, ZIGZAG, ZAGGIZ, WZAGZIG, VZAG, WZAGZIG2} (default is LINE)
inline void setScanPattern(scan_patterns scan_pattern);
// Set the block pattern {ABCD, DBCA} (default is ABCD)
inline void setBlockPattern(block_patterns block_pattern);
// Set the number of panels that make up the display area width (default is 1)
inline void setPanelsWidth(uint8_t panels);
// Set the brightness of the panels (default is 255)
inline void setBrightness(uint8_t brightness);
// Set driver chip type
inline void setDriverChip(driver_chips driver_chip);
private:
// the display buffer for the LED matrix
uint8_t *PxMATRIX_buffer;
#ifdef PxMATRIX_DOUBLE_BUFFER
uint8_t *PxMATRIX_buffer2;
#endif
// GPIO pins
uint8_t _LATCH_PIN;
uint8_t _OE_PIN;
uint8_t _A_PIN;
uint8_t _B_PIN;
uint8_t _C_PIN;
uint8_t _D_PIN;
uint8_t _E_PIN;
// SPI pins
uint8_t _SPI_CLK = SPI_BUS_CLK;
uint8_t _SPI_MOSI = SPI_BUS_MOSI;
uint8_t _SPI_MISO = SPI_BUS_MISO;
uint8_t _SPI_SS = SPI_BUS_SS;
uint16_t _width;
uint16_t _height;
uint8_t _panels_width;
uint8_t _rows_per_buffer;
uint8_t _row_sets_per_buffer;
uint8_t _panel_width_bytes;
// Color offset
uint8_t _color_R_offset;
uint8_t _color_G_offset;
uint8_t _color_B_offset;
// Panel Brightness
uint8_t _brightness;
// Color pattern that is pushed to the display
uint8_t _display_color;
// Holds some pre-computed values for faster pixel drawing
uint32_t *_row_offset;
// Holds the display row pattern type
uint8_t _row_pattern;
// Number of bytes in one color
uint8_t _pattern_color_bytes;
// Total number of bytes that is pushed to the display at a time
// 3 * _pattern_color_bytes
uint16_t _buffer_size;
uint16_t _send_buffer_size;
// This is for double buffering
bool _active_buffer;
// Display and color engine
bool _rotate;
bool _flip;
bool _fast_update;
// Holds multiplex pattern
mux_patterns _mux_pattern;
//Holdes the color order
color_orders _color_order;
uint8_t _mux_delay_A;
uint8_t _mux_delay_B;
uint8_t _mux_delay_C;
uint8_t _mux_delay_D;
uint8_t _mux_delay_E;
// Holds the scan pattern
scan_patterns _scan_pattern;
// Holds the block pattern
block_patterns _block_pattern;
// Holds the used driver chip
driver_chips _driver_chip;
// Used for test pattern
uint16_t _test_pixel_counter;
uint16_t _test_line_counter;
unsigned long _test_last_call;
// Generic function that draw one pixel
inline void fillMatrixBuffer(int16_t x, int16_t y, uint8_t r, uint8_t g,uint8_t b, bool selected_buffer);
// Init code common to both constructors
inline void init(uint16_t width, uint16_t height ,uint8_t LATCH, uint8_t OE, uint8_t A,uint8_t B);
// Light up LEDs and hold for show_time microseconds
inline void latch(uint16_t show_time );
// Set row multiplexer
inline void set_mux(uint8_t value, bool random_access);
inline void spi_init();
// Write configuration register in some driver chips
inline void writeRegister(uint16_t reg_value, uint8_t reg_position);
inline void fm612xWriteRegister(uint16_t reg_value, uint8_t reg_position);
};
// Pass 8-bit (each) R,G,B, get back 16-bit packed color
inline uint16_t PxMATRIX::color565(uint8_t r, uint8_t g, uint8_t b) {
return ((r & 0xF8) << 8) | ((g & 0xFC) << 3) | (b >> 3);
}
// Init code common to both constructors
inline void PxMATRIX::init(uint16_t width, uint16_t height,uint8_t LATCH, uint8_t OE, uint8_t A, uint8_t B){
_LATCH_PIN = LATCH;
_OE_PIN = OE;
_display_color=0;
_A_PIN = A;
_B_PIN = B;
_width = width;
_height = height;
_buffer_size = (_width*_height * 3 / 8);
_brightness=255;
_panels_width = 1;
_rows_per_buffer = _height/2;
_panel_width_bytes = (_width/_panels_width)/8;
_active_buffer=false;
_color_R_offset=0;
_color_G_offset=0;
_color_B_offset=0;
_test_last_call=0;
_test_pixel_counter=0;
_test_line_counter=0;
_rotate=0;
_flip=0;
_fast_update=0;
_row_pattern=0;
_scan_pattern=LINE;
_block_pattern=ABCD;
_driver_chip=SHIFT;
_mux_delay_A=0;
_mux_delay_B=0;
_mux_delay_C=0;
_mux_delay_D=0;
_mux_delay_E=0;
PxMATRIX_buffer= new uint8_t[PxMATRIX_COLOR_DEPTH*_buffer_size];
#ifdef PxMATRIX_DOUBLE_BUFFER
PxMATRIX_buffer2=new uint8_t[PxMATRIX_COLOR_DEPTH*_buffer_size];
#endif
}
#ifdef ESP32
inline void PxMATRIX::fm612xWriteRegister(uint16_t reg_value, uint8_t reg_position)
{
spi_t * spi = SPI.bus();
// reg_value = 0x1234; debug
for(int i=0; i<47; i++)
SPI_2BYTE(reg_value);
spiSimpleTransaction(spi);
spi->dev->mosi_dlen.usr_mosi_dbitlen = 16-reg_position-1;
spi->dev->miso_dlen.usr_miso_dbitlen = 0;
spi->dev->data_buf[0] = reg_value>>8;
spi->dev->cmd.usr = 1;
while(spi->dev->cmd.usr);
GPIO_REG_SET(1 << _LATCH_PIN);
spi->dev->mosi_dlen.usr_mosi_dbitlen = (reg_position-8)-1;
spi->dev->data_buf[0] = reg_value>>(reg_position-8);
spi->dev->cmd.usr = 1;
while(spi->dev->cmd.usr);
spiEndTransaction(spi);
SPI_BYTE(reg_value&0xff);
GPIO_REG_CLEAR(1 << _LATCH_PIN);
}
#else
inline void PxMATRIX::writeRegister(uint16_t reg_value, uint8_t reg_position)
{
if (_driver_chip == FM6124 || _driver_chip == FM6126A){
if (_driver_chip == FM6124) {
Serial.println("\nFM6124 - REG: " + String(reg_position));
} else {
Serial.println("\nFM6126A - REG: " + String(reg_position));
}
// All FM6126A code is based on the excellent guesswork by shades66 in https://github.com/hzeller/rpi-rgb-led-matrix/issues/746
// Register 12 - brightness/gain settings, three 6bit values, aaaaaabbbbbbcccccc a= darkness?
// seems to add red to the background when the leds are off, b=main brightness c=finer brightness
// (i'm not sure if b & c are actually as 12 bit value but with b set to all 1's the value in c doesn't seem to make much difference)
// Register 13 - not sure what it's doing yet, just that 1 specific bit within seems to be an overall enable function.
// Now set all the values at the top to the same value for each of register 12/13 to get the same settings across the panel, the current code loads different settings into each 32 columns.
// clocking in the register is simply clocking in the value (i've 2 panels so 128bits of data) and for the last 12/13 bits depending on the register setting the latch to high. the final drop of latch to low clocks in the configuration. this is done by sending the same value to r1/r2/g1/g2/b1/b2 at the same time to load the config into all the FM6126 chips
// Some necessary magic bit fields
// b12 - 1 adds red tinge
// b12 - 9/8/7/6/5 = 4 bit brightness
// b13 - 9 =1 screen on
// b13 - 6 =1 screen off
pinMode(_SPI_CLK,OUTPUT);
pinMode(_SPI_MOSI,OUTPUT);
digitalWrite(_SPI_CLK,HIGH); // CCK LOW
digitalWrite(_OE_PIN,LOW);
digitalWrite(_LATCH_PIN,HIGH);
digitalWrite(_A_PIN,HIGH);
digitalWrite(_B_PIN,LOW);
digitalWrite(_C_PIN,LOW);
digitalWrite(_D_PIN,LOW);
uint8_t reg_bit=0;
for (uint32_t bit_counter=0; bit_counter < _send_buffer_size*8; bit_counter++)
{
reg_bit=bit_counter%16;
if ((reg_value>>reg_bit)&1)
digitalWrite(_SPI_MOSI,HIGH);
else
digitalWrite(_SPI_MOSI,LOW);
delay(1);
digitalWrite(_SPI_CLK,LOW); // CLK HIGH
delay(1);
digitalWrite(_SPI_CLK,HIGH); // CLK LOW
delay(1);
if ((bit_counter == (_send_buffer_size*8 - reg_position-1)))
{
digitalWrite(_LATCH_PIN,LOW);
}
}
digitalWrite(_LATCH_PIN,HIGH);
}
digitalWrite(_OE_PIN,HIGH);
}
#endif
inline void PxMATRIX::setDriverChip(driver_chips driver_chip)
{
_driver_chip=driver_chip;
if (driver_chip == FM6124 || driver_chip == FM6126A){
uint16_t b12a=0b0111111111111111; //亮度: high
b12a=0b0111100011111111; //亮度: low
// uint16_t b12b=0b0111100000111111;
// uint16_t b12c=0b0111111111111111;
// uint16_t b12d=0b0111100000111111;
uint16_t b13a=0b0000000001000000;
// uint16_t b13b=0b0000000001000000;
// uint16_t b13c=0b0000000001000000;
// uint16_t b13d=0b0000000001000000;
#ifdef ESP32
pinMode(_OE_PIN, OUTPUT);
pinMode(_LATCH_PIN, OUTPUT);
digitalWrite(_OE_PIN, HIGH);
pinMode(_LATCH_PIN, LOW);
fm612xWriteRegister(b12a,11);
fm612xWriteRegister(b13a,12);
#else
writeRegister(b12a, 12);
writeRegister(b13a, 13);
#endif
}
}
inline void PxMATRIX::setMuxPattern(mux_patterns mux_pattern)
{
_mux_pattern=mux_pattern;
// We handle the multiplexing in the library and activate one of for
// row drivers --> need A,B,C,D pins
if (_mux_pattern==STRAIGHT)
{
pinMode(_C_PIN, OUTPUT);
pinMode(_D_PIN, OUTPUT);
}
if (_mux_pattern==SHIFTREG_SPI_SE)
{
pinMode(_B_PIN, OUTPUT); // B is used as /Enable for row mux
digitalWrite(_B_PIN,LOW); // Enable output of row mux
}
if (_mux_pattern==SHIFTREG_ABC)
{
pinMode(_A_PIN, OUTPUT); // A is used as MUX_CLK
pinMode(_B_PIN, OUTPUT); // B is used as MUX_ENABLE
pinMode(_C_PIN, OUTPUT); // C is used as MUX_DATA
digitalWrite(_B_PIN,LOW); // Enable output of row mux
}
if (_mux_pattern==SHIFTREG_ABC_BIN_DE)
{
pinMode(_A_PIN, OUTPUT); // A is used as MUX_CLK
pinMode(_B_PIN, OUTPUT); // B is used as MUX_DATA
pinMode(_C_PIN, OUTPUT); // C is used as MUX_ENABLE
pinMode(_D_PIN, OUTPUT); // D is 4th bit of row
pinMode(_E_PIN, OUTPUT); // E is 5th bit of row
digitalWrite(_C_PIN,LOW); // Enable output of row mux
}
}
inline void PxMATRIX::setColorOrder(color_orders color_order)
{
_color_order=color_order;
}
inline void PxMATRIX::setMuxDelay(uint8_t mux_delay_A, uint8_t mux_delay_B, uint8_t mux_delay_C, uint8_t mux_delay_D, uint8_t mux_delay_E)
{
_mux_delay_A=mux_delay_A;
_mux_delay_B=mux_delay_B;
_mux_delay_C=mux_delay_C;
_mux_delay_D=mux_delay_D;
_mux_delay_E=mux_delay_E;
}
inline void PxMATRIX::setScanPattern(scan_patterns scan_pattern)
{
_scan_pattern=scan_pattern;
}
inline void PxMATRIX::setBlockPattern(block_patterns block_pattern)
{
_block_pattern=block_pattern;
}
inline void PxMATRIX::setPanelsWidth(uint8_t panels) {
_panels_width=panels;
_panel_width_bytes = (_width/_panels_width)/8;
}
inline void PxMATRIX::setRotate(bool rotate) {
_rotate=rotate;
}
inline void PxMATRIX::setFlip(bool flip) {
_flip=flip;
}
inline void PxMATRIX::setFastUpdate(bool fast_update) {
_fast_update=fast_update;
}
inline void PxMATRIX::setBrightness(uint8_t brightness) {
_brightness=brightness;
}
inline PxMATRIX::PxMATRIX(uint16_t width, uint16_t height,uint8_t LATCH, uint8_t OE, uint8_t A,uint8_t B) : Adafruit_GFX(width+ADAFRUIT_GFX_EXTRA, height)
{
init(width, height, LATCH, OE, A, B);
}
inline PxMATRIX::PxMATRIX(uint16_t width, uint16_t height,uint8_t LATCH, uint8_t OE, uint8_t A,uint8_t B,uint8_t C) : Adafruit_GFX(width+ADAFRUIT_GFX_EXTRA, height)
{
_C_PIN = C;
init(width, height, LATCH, OE, A, B);
}
inline PxMATRIX::PxMATRIX(uint16_t width, uint16_t height,uint8_t LATCH, uint8_t OE, uint8_t A,uint8_t B,uint8_t C,uint8_t D) : Adafruit_GFX(width+ADAFRUIT_GFX_EXTRA, height)
{
_C_PIN = C;
_D_PIN = D;
init(width, height, LATCH, OE, A, B);
}
inline PxMATRIX::PxMATRIX(uint16_t width, uint16_t height,uint8_t LATCH, uint8_t OE, uint8_t A,uint8_t B,uint8_t C,uint8_t D, uint8_t E) : Adafruit_GFX(width+ADAFRUIT_GFX_EXTRA, height)
{
_C_PIN = C;
_D_PIN = D;
_E_PIN = E;
init(width, height, LATCH, OE, A, B);
}
inline void PxMATRIX::drawPixel(int16_t x, int16_t y, uint16_t color) {
drawPixelRGB565(x, y, color);
}
inline void PxMATRIX::showBuffer() {
_active_buffer=!_active_buffer;
}
#ifdef PxMATRIX_DOUBLE_BUFFER
inline void PxMATRIX::copyBuffer(bool reverse = false) {
// This copies the display buffer to the drawing buffer (or reverse)
// You may need this in case you rely on the framebuffer to always contain the last frame
// _active_buffer = true means that PxMATRIX_buffer2 is displayed
if(_active_buffer ^ reverse) {
memcpy(PxMATRIX_buffer, PxMATRIX_buffer2, PxMATRIX_COLOR_DEPTH*_buffer_size);
} else {
memcpy(PxMATRIX_buffer2, PxMATRIX_buffer, PxMATRIX_COLOR_DEPTH*_buffer_size);
}
}
#endif
inline void PxMATRIX::setColorOffset(uint8_t r, uint8_t g,uint8_t b)
{
_color_R_offset=r;
_color_G_offset=g;
_color_B_offset=b;
}
inline void PxMATRIX::fillMatrixBuffer(int16_t x, int16_t y, uint8_t r, uint8_t g, uint8_t b,bool selected_buffer)
{
if (r>_color_R_offset)
r-=_color_R_offset;
else
r=0;
if (g>_color_G_offset)
g-=_color_G_offset;
else
g=0;
if (b>_color_B_offset)
b-=_color_B_offset;
else
b=0;
if (_block_pattern==DBCA)
{
// Every matrix is segmented in 8 blocks - 2 in X, 4 in Y direction
// |AB|
// |CD|
// |AB|
// |CD|
// Have to rewrite this block suff and move to the scan pattern section - this will only work for chaining up to 2 panels
if (_panels_width>1) // Only works for two panels
{
if ((x>=_width/4) && (x<_width/2))
x+=_width/4;
else if ((x>=_width/2) && (x<_width*3/4))
x-=_width/4;
}
uint16_t y_block = y*4/_height;
uint16_t x_block = x*2*_panels_width/_width;
// Swapping A & D
if (!(y_block%2)) // Even y block
{
if (!(x_block%2)) // Left side of panel
{
x+=_width/2/_panels_width;
y+=_height/4;
}
}
else // Odd y block
{
if (x_block%2) // Right side of panel
{
x-=_width/2/_panels_width;
y-=_height/4;
}
}
}
if (_rotate){
uint16_t temp_x=x;
x=y;
y=_height-1-temp_x;
}
// Panels are naturally flipped
if (!_flip)
x =_width - 1 -x;
if ((x < 0) || (x >= _width) || (y < 0) || (y >= _height))
return;
if (_color_order!= RRGGBB)
{
uint8_t r_temp=r;
uint8_t g_temp=g;
uint8_t b_temp=b;
switch (_color_order)
{
case (RRGGBB): break;
case (RRBBGG): g=b_temp; b=g_temp; break;
case (GGRRBB): r=g_temp; g=r_temp; break;
case (GGBBRR): r=g_temp; g=b_temp; b=r_temp; break;
case (BBRRGG): r=b_temp; g=r_temp; b=g_temp; break;
case (BBGGRR): r=b_temp; g=g_temp; b=r_temp; break;
}
}
uint32_t base_offset;
uint32_t total_offset_r=0;
uint32_t total_offset_g=0;
uint32_t total_offset_b=0;
if (_scan_pattern==WZAGZIG || _scan_pattern==VZAG || _scan_pattern==WZAGZIG2)
{
// get block coordinates and constraints
uint8_t rows_per_buffer = _height/2;
uint8_t rows_per_block = rows_per_buffer/2;
// this is a defining characteristic of WZAGZIG and VZAG:
// two byte alternating chunks bottom up for WZAGZIG
// two byte up down down up for VZAG
uint8_t cols_per_block = 16;
uint8_t panel_width = _width/_panels_width;
uint8_t blocks_x_per_panel = panel_width/cols_per_block;
uint8_t panel_index = x/panel_width;
// strip down to single panel coordinates, restored later using panel_index
x = x%panel_width;
uint8_t base_y_offset = y/rows_per_buffer;
uint8_t buffer_y = y%rows_per_buffer;
uint8_t block_x = x/cols_per_block;
uint8_t block_x_mod = x%cols_per_block;
uint8_t block_y = buffer_y/rows_per_block; // can only be 0/1 for height/pattern=4
uint8_t block_y_mod = buffer_y%rows_per_block;
// translate block address to new block address
// invert block_y so remaining translation will be more sane
uint8_t block_y_inv = 1 - block_y;
uint8_t block_x_inv = blocks_x_per_panel - block_x - 1;
uint8_t block_linear_index;
if (_scan_pattern==WZAGZIG2) {
block_linear_index = block_x_inv * 2 + block_y;
}
else if (_scan_pattern==WZAGZIG)
{
// apply x/y block transform for WZAGZIG, only works for height/pattern=4
block_linear_index = block_x_inv * 2 + block_y_inv;
}
else if (_scan_pattern==VZAG)
{
// apply x/y block transform for VZAG, only works for height/pattern=4 and 32x32 panels until a larger example is found
block_linear_index = block_x_inv * 3 * block_y + block_y_inv * (block_x_inv + 1);
}
// render block linear index back into normal coordinates
uint8_t new_block_x = block_linear_index % blocks_x_per_panel;
uint8_t new_block_y = 1 - block_linear_index/blocks_x_per_panel;
x = new_block_x * cols_per_block + block_x_mod + panel_index * panel_width;
y = new_block_y * rows_per_block + block_y_mod + base_y_offset * rows_per_buffer;
}
// This code sections computes the byte in the buffer that will be manipulated.
if (_scan_pattern!=LINE && _scan_pattern!=WZAGZIG && _scan_pattern!=VZAG && _scan_pattern!=WZAGZIG2)
{
// Precomputed row offset values
base_offset=_row_offset[y]-(x/8)*2;
uint8_t row_sector=0;
uint16_t row_sector__offset=_width/4;
for (uint8_t yy = 0; yy<_height; yy+=2*_row_pattern)
{
if ((yy<=y) && (y<yy+_row_pattern))
total_offset_r=base_offset-row_sector__offset*row_sector;
if ((yy+_row_pattern<=y) && (y<yy+2*_row_pattern))
total_offset_r=base_offset-row_sector__offset*row_sector;
row_sector++;
}
}
else
{
// can only be non-zero when _height/(2 inputs per panel)/_row_pattern > 1
// i.e.: 32x32 panel with 1/8 scan (A/B/C lines) -> 32/2/8 = 2
uint8_t vert_index_in_buffer = (y%_rows_per_buffer)/_row_pattern; // which set of rows per buffer
// can only ever be 0/1 since there are only ever 2 separate input sets present for this variety of panels (R1G1B1/R2G2B2)
uint8_t which_buffer = y/_rows_per_buffer;
uint8_t x_byte = x/8;
// assumes panels are only ever chained for more width
uint8_t which_panel = x_byte/_panel_width_bytes;
uint8_t in_row_byte_offset = x_byte%_panel_width_bytes;
// this could be pretty easily extended to vertical stacking as well
total_offset_r = _row_offset[y] - in_row_byte_offset - _panel_width_bytes*(_row_sets_per_buffer*(_panels_width*which_buffer + which_panel) + vert_index_in_buffer);
}
uint8_t bit_select = x%8;
// Normally the bytes in one buffer would be sequencial, e.g.
// 0-1-2-3-
// 0-1-2-3-
// hence the upper and lower row start with [OL|OH].
//
// However some panels have a byte wise row-changing scanning pattern and/or a bit changing pattern that we have to take case of
// For example [1L|1H] [3L|3H] for ZIGZAG or [0L|0H] [2L|2H] for ZAGZIG
// | \ | \ | / | /
// [0L|0H] [2L|2H] [1L|1H] [3L|3H]
//
// For example [0H|1L] [2H|3L] for ZZAGG or [0L|1L] [2L|3L] for ZZIAGG
// | \ | \ | / | /
// [0L|1H] [2L|3H] [0H|1H] [2H|3H]
//
//
// In order to make the pattern start on both rows with [0L|0H] we have to add / subtract values to / from total_offset_r and bit_select
if ((y%(_row_pattern*2))<_row_pattern)
{
// Variant of ZAGZIG pattern with bit oder reversed on lower part (starts on upper part)
if (_scan_pattern==ZAGGIZ)
{
total_offset_r--;
bit_select = 7-bit_select;
}
// Row changing pattern (starts on upper part)
if (_scan_pattern==ZAGZIG)
total_offset_r--;
// Byte split pattern - like ZAGZIG but after every 4 bit (starts on upper part)
if (_scan_pattern == ZZIAGG )
{
if (bit_select>3)
bit_select +=4;
else
total_offset_r--;
}
// Byte split pattern (lower part)
if (_scan_pattern==ZZAGG)
if (bit_select>3) total_offset_r--;
}
else
{
if (_scan_pattern==ZIGZAG)
total_offset_r--;
// Byte split pattern - like ZAGZIG but after every 4 bit (starts on upper part)
if (_scan_pattern == ZZIAGG )
{
if (bit_select>3)
{
total_offset_r--;
bit_select -=4;
}
}
// Byte split pattern (upper part)
if (_scan_pattern==ZZAGG)
{
if (bit_select<=3)
bit_select += 4;
else
{
bit_select -=4;
total_offset_r--;
}
}
}
total_offset_g=total_offset_r-_pattern_color_bytes;
total_offset_b=total_offset_g-_pattern_color_bytes;
uint8_t *PxMATRIX_bufferp = PxMATRIX_buffer;
#ifdef PxMATRIX_DOUBLE_BUFFER
PxMATRIX_bufferp = selected_buffer ? PxMATRIX_buffer2 : PxMATRIX_buffer;
#endif
r = r >> (8-PxMATRIX_COLOR_DEPTH);
g = g >> (8-PxMATRIX_COLOR_DEPTH);
b = b >> (8-PxMATRIX_COLOR_DEPTH);
//Color interlacing
for (int this_color_bit=0; this_color_bit<PxMATRIX_COLOR_DEPTH; this_color_bit++)
{
if ((r >> this_color_bit) & 0x01)
PxMATRIX_bufferp[this_color_bit*_buffer_size+total_offset_r] |=_BV(bit_select);
else
PxMATRIX_bufferp[this_color_bit*_buffer_size+total_offset_r] &= ~_BV(bit_select);
if ((g >> this_color_bit) & 0x01)
PxMATRIX_bufferp[this_color_bit*_buffer_size+total_offset_g] |=_BV(bit_select);
else
PxMATRIX_bufferp[this_color_bit*_buffer_size+total_offset_g] &= ~_BV(bit_select);
if ((b >> this_color_bit) & 0x01)
PxMATRIX_bufferp[this_color_bit*_buffer_size+total_offset_b] |=_BV(bit_select);
else
PxMATRIX_bufferp[this_color_bit*_buffer_size+total_offset_b] &= ~_BV(bit_select);
}
}
inline void PxMATRIX::drawPixelRGB565(int16_t x, int16_t y, uint16_t color) {
uint8_t r = ((((color >> 11) & 0x1F) * 527) + 23) >> 6;
uint8_t g = ((((color >> 5) & 0x3F) * 259) + 33) >> 6;
uint8_t b = (((color & 0x1F) * 527) + 23) >> 6;
#ifdef PxMATRIX_DOUBLE_BUFFER
fillMatrixBuffer(x, y, r, g, b, !_active_buffer);
#else
fillMatrixBuffer(x, y, r, g, b, false);
#endif
}
inline void PxMATRIX::drawPixelRGB888(int16_t x, int16_t y, uint8_t r, uint8_t g,uint8_t b) {
#ifdef PxMATRIX_DOUBLE_BUFFER
fillMatrixBuffer(x, y, r, g, b, !_active_buffer);
#else
fillMatrixBuffer(x, y, r, g, b, false);
#endif
}
// the most basic function, get a single pixel
inline uint8_t PxMATRIX::getPixel(int8_t x, int8_t y) {
return (0);//PxMATRIX_buffer[x+ (y/8)*LCDWIDTH] >> (y%8)) & 0x1;
}
inline void PxMATRIX::begin()
{
begin(8);
}
void PxMATRIX::begin(uint8_t row_pattern, uint8_t CLK, uint8_t MOSI, uint8_t MISO, uint8_t SS)
{
_SPI_CLK = CLK;
_SPI_MOSI = MOSI;
_SPI_MISO = MISO;
_SPI_SS = SS;
begin(row_pattern);
}
void PxMATRIX::spi_init(){
#ifdef ESP32
SPI.begin(_SPI_CLK, _SPI_MISO, _SPI_MOSI, _SPI_SS);
#else
SPI.begin();
#endif
#if defined(ESP32) || defined(ESP8266)
SPI.setFrequency(PxMATRIX_SPI_FREQUENCY);
#endif
SPI.setDataMode(SPI_MODE0);
SPI.setBitOrder(MSBFIRST);
}