-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
154 lines (137 loc) · 6.14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os
import torch.utils.data
from torch.nn import DataParallel
from datetime import datetime
from torch.optim.lr_scheduler import MultiStepLR
from config import Config as cfg
from core import model, dataset
from core.utils import init_log, progress_bar
os.environ['CUDA_VISIBLE_DEVICES'] = cfg.cuda_id
start_epoch = 1
save_dir = os.path.join(cfg.save_dir, datetime.now().strftime('%Y%m%d_%H%M%S'))
if os.path.exists(save_dir):
raise NameError('model dir exists!')
os.makedirs(save_dir)
logging = init_log(save_dir)
_print = logging.info
# load stanford car dataset
trainset = dataset.StanfordCar(data_path="./datasets/stankford_car", is_train=True)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=cfg.BATCH_SIZE,
shuffle=True, num_workers=8, drop_last=False)
testset = dataset.StanfordCar(data_path="./datasets/stankford_car", is_train=False)
testloader = torch.utils.data.DataLoader(testset, batch_size=cfg.BATCH_SIZE,
shuffle=False, num_workers=8, drop_last=False)
# define model
net = model.attention_net(topN=cfg.PROPOSAL_NUM)
if cfg.resume:
ckpt = torch.load(cfg.resume)
net.load_state_dict(ckpt['net_state_dict'])
start_epoch = ckpt['epoch'] + 1
creterion = torch.nn.CrossEntropyLoss()
# define optimizers
raw_parameters = list(net.pretrained_model.parameters())
part_parameters = list(net.proposal_net.parameters())
concat_parameters = list(net.concat_net.parameters())
partcls_parameters = list(net.partcls_net.parameters())
raw_optimizer = torch.optim.SGD(raw_parameters, lr=cfg.LR, momentum=0.9, weight_decay=cfg.WD)
concat_optimizer = torch.optim.SGD(concat_parameters, lr=cfg.LR, momentum=0.9, weight_decay=cfg.WD)
part_optimizer = torch.optim.SGD(part_parameters, lr=cfg.LR, momentum=0.9, weight_decay=cfg.WD)
partcls_optimizer = torch.optim.SGD(partcls_parameters, lr=cfg.LR, momentum=0.9, weight_decay=cfg.WD)
schedulers = [MultiStepLR(raw_optimizer, milestones=cfg.STEPS, gamma=0.1),
MultiStepLR(concat_optimizer, milestones=cfg.STEPS, gamma=0.1),
MultiStepLR(part_optimizer, milestones=cfg.STEPS, gamma=0.1),
MultiStepLR(partcls_optimizer, milestones=cfg.STEPS, gamma=0.1)]
net = net.cuda()
net = DataParallel(net)
for epoch in range(start_epoch, cfg.MAX_EPOCH):
# begin training
_print('--' * 50)
net.train()
for i, data in enumerate(trainloader):
img, label = data[0].cuda(), data[1].cuda()
batch_size = img.size(0)
raw_optimizer.zero_grad()
part_optimizer.zero_grad()
concat_optimizer.zero_grad()
partcls_optimizer.zero_grad()
raw_logits, concat_logits, part_logits, _, top_n_prob = net(img)
part_loss = model.list_loss(part_logits.view(batch_size * cfg.PROPOSAL_NUM, -1),
label.unsqueeze(1).repeat(1, cfg.PROPOSAL_NUM).view(-1)).view(batch_size, cfg.PROPOSAL_NUM)
raw_loss = creterion(raw_logits, label) # 普通的分类
concat_loss = creterion(concat_logits, label) # 细粒度分类(原始特征+注意力区域特征)
rank_loss = model.ranking_loss(top_n_prob, part_loss)
partcls_loss = creterion(part_logits.view(batch_size * cfg.PROPOSAL_NUM, -1),
label.unsqueeze(1).repeat(1, cfg.PROPOSAL_NUM).view(-1))# 衡量注意力区域特征的信息丰富度得分
total_loss = raw_loss + rank_loss + concat_loss + partcls_loss
total_loss.backward()
raw_optimizer.step()
part_optimizer.step()
concat_optimizer.step()
partcls_optimizer.step()
progress_bar(i, len(trainloader), 'train')
for scheduler in schedulers:
scheduler.step()
train_loss = 0
train_correct = 0
total = 0
net.eval()
for i, data in enumerate(trainloader):
with torch.no_grad():
img, label = data[0].cuda(), data[1].cuda()
batch_size = img.size(0)
_, concat_logits, _, _, _ = net(img)
# calculate loss
concat_loss = creterion(concat_logits, label)
# calculate accuracy
_, concat_predict = torch.max(concat_logits, 1)
total += batch_size
train_correct += torch.sum(concat_predict.data == label.data)
train_loss += concat_loss.item() * batch_size
progress_bar(i, len(trainloader), 'eval train set')
train_acc = float(train_correct) / total
train_loss = train_loss / total
_print(
'epoch:{} - train loss: {:.3f} and train acc: {:.3f} total sample: {}'.format(
epoch,
train_loss,
train_acc,
total))
# evaluate on test set
if epoch % cfg.SAVE_FREQ == 0:
test_loss = 0
test_correct = 0
total = 0
for i, data in enumerate(testloader):
with torch.no_grad():
img, label = data[0].cuda(), data[1].cuda()
batch_size = img.size(0)
_, concat_logits, _, _, _ = net(img)
# calculate loss
concat_loss = creterion(concat_logits, label)
# calculate accuracy
_, concat_predict = torch.max(concat_logits, 1)
total += batch_size
test_correct += torch.sum(concat_predict.data == label.data)
test_loss += concat_loss.item() * batch_size
progress_bar(i, len(testloader), 'eval test set')
test_acc = float(test_correct) / total
test_loss = test_loss / total
_print(
'epoch:{} - test loss: {:.3f} and test acc: {:.3f} total sample: {}'.format(
epoch,
test_loss,
test_acc,
total))
# save model
net_state_dict = net.module.state_dict()
if not os.path.exists(save_dir):
os.mkdir(save_dir)
torch.save({
'epoch': epoch,
'train_loss': train_loss,
'train_acc': train_acc,
'test_loss': test_loss,
'test_acc': test_acc,
'net_state_dict': net_state_dict},
os.path.join(save_dir, '%03d.ckpt' % epoch))
print('finishing training')